
CAN Bus Controller

HT45B3305H

Revision: V1.30 Date: March 31, 2023

Rev. 1.30 2 March 31, 2023 Rev. 1.30 3 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Table of Contents
Features..3
Applications...3
General Description... 3
Block Diagram.. 4
Pin Assignment.. 4
Pin Description..5
Absolute Maximum Ratings.. 5
D.C. Characteristics... 6

Operating Voltage Characteristics..6
Operating Current Characteristics..6
Standby Current Characteristics..6

A.C. Characteristics... 7
System Frequency Characteristics..7
Timing Characteristics..7

CAN Electrical Characteristics... 7
Power-on Reset Characteristics... 8
Power Control Function.. 8

External Crystal Oscillator – HXT...8
CLKOUT Pin..8
IDLE Mode...9
SLEEP Mode and Wake-up...9

Functional Description.. 10
Write Buffer and Data Check...10
SPI and I2C Frame Fields... 11
SPI Serial Interface..14
I2C Serial Interface...15
HT45B3305H CAN Block Diagram..17
Interrupt Output Pins..18
Message RAM and FIFO Buffer Configuration..18
HT45B3305H CAN Operating Modes..20
CAN Application...24

Register Description.. 31
Register Map..31
Register Reset Condition...33
Register Description...35

Application Circuits... 56
SPI Serial Interface..56
I2C Serial Interface...57

Package Information... 58
16-pin NSOP (150mil) Outline Dimensions..59
SAW Type 16-pin QFN (3mm×3mm for FP0.25mm) Outline Dimensions...................................60

Rev. 1.30 2 March 31, 2023 Rev. 1.30 3 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Features
•	 Operating Voltage: 3.0V~5.5V

•	 Oscillator Type: High Speed External Crystal – HXT

•	 Sleep Mode and Idle Mode

•	 32-byte Write Buffer with Data Check Unit for communicating with Host MCUs

•	 Serial Communication Interfaces – I2C or SPI (up to 10MHz SPI data rate)
	♦ In order to ensure correct data transmission, the SPI and I2C interfaces cannot be used in

one(master MCU)-to-multiple(slave devices) situations

•	 Clock Out pin with programmable prescaler

•	 Interrupt output pins with selectable active level configuration

•	 HT45B3305H CAN Core, contains the following features:
	♦ Conforms to ISO11898-1 and CAN 2.0A/B
	♦ 32 Message Objects
	♦ Each Message Object has its own identifier mask
	♦ Programmable FIFO mode – concatenation of Message Objects
	♦ Maskable interrupt
	♦ Programmable loop-back mode for self-test operation

•	 Support the SOF (Start of Frame) signal output

•	 32×139-bit Message Memory

•	 Package types: 16-pin NSOP/QFN

Applications
•	 Networked Automotive Products

•	 Industrial Automation

•	 Entertainment Products

General Description
A complete CAN Node requires a CAN controller, a CAN transceiver and a microcontroller.

The device is developed as a stand-alone CAN (Controller Area Network) controller. For the
connection to the physical layer additional transceiver hardware is required. Two pins of CANTX
and CANRX interface to the CAN BUS Transceiver. The device includes a SPI and I2C interfaces to
communicate with a microcontroller.

The HT45B3305H CAN Module licensed from Bosch. The HT45B3305H CAN supports the CAN
2.0 Part A and B protocol specifications and compatible with the ISO11898-1 standards. This CAN
Module abbreviated as C_CAN. It is capable of transmitting and receiving standard and extended
messages. It also capable of both acceptance filtering and message handler and includes 32 Message
Objects which can be concatenated to configurate FIFO buffer with different depth. The SPI
interface with data rate of up 10MHz and I2C serial interface are provided for communication with a
SPI or I2C based 8-bit MCU.

Rev. 1.30 4 March 31, 2023 Rev. 1.30 5 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Block Diagram

VDD

Write Buffer &
Data Check

Protocol Logic

HT8 to C
CAN

Generic
Interface

VSS

VDD

Reset
Circuit

OSC2

OSC1

CLKOUT

CANTX

CANRX

SOF

CANMINT

RM1INT

RMXINT

RES

MUX Prescaler HXT

SSIF

Pin-Shared
With CLKOUT

SPI
SCK/SCL

MISO/IA0

MOSI/SDA

I2C

CS/IA1

: Pin-Shared Node

fSYS

Generic
Interface

Message
RAM

32×139 bits

Message
Handler

CAN Module

CAN Core

fSYS/2

fSYS/4

fSYS/8

VSS

Write Buffers31
1

0

Clock System

SYSCLK

Pin Assignment

16
15
14
13
12
11
10
9

1
2
3
4
5
6
7
8

VDD
VSS

CLKOUT/SSIF
CS/IA1

SCK/SCL
RMXINT

MISO/IA0
MOSI/SDA

OSC1
OSC2
SOF
RES
RM1INT
CANMINT
CANRX
CANTX

HT45B3305H
16 NSOP-A

1
2
3
4

V
D

D
V

S
S

C
LK

O
U

T/S
S

IF
O

S
C

1
O

S
C

2

SOF
RES

R
M

1IN
T

CANMINT
CANRX

C
A

N
TX

CS/IA1
SCK/SCL
RMXINT

MISO/IA0

M
O

S
I/S

D
A

12
11
10
9

5 6 7 8

16 15 14 13

HT45B3305H
16 QFN-A

Rev. 1.30 4 March 31, 2023 Rev. 1.30 5 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Pin Description
Pin Name Function Type Description

CLKOUT/SSIF
CLKOUT O Clock output pin with programmable prescaler

SSIF I SPI or I2C interface selection pin when RES was low

CS/IA1
CS I Chip Select input pin for SPI interface
IA1 I Define I2C address bit 1 when RES was low

SCK/SCL
SCK I Clock input pin for SPI interface
SCL I Clock input pin for I2C interface

MISO/IA0
MISO O Master In Slave Out, the device data output for SPI interface
IA0 I Defining I2C address bit 0 when RES was low

MOSI/SDA
MOSI I Master Out Slave In, the device data input for SPI interface
SDA I/O Data input/output for I2C interface

OSC1 OSC1 I Oscillator input
OSC2 OSC2 O Oscillator output
SOF SOF O Start of Frame signal
RES RES I Reset input, active-low
CANMINT CANMINT O CAN Interrupt output pin
RM1INT RM1INT O Receive a Message into Message Object 1 Successfully Interrupt

RMXINT RMXINT O Receive a Message into Message Object x Successfully Interrupt, the x value
is user-defined using the CANCFG Register

CANTX CANTX O Transmit output pin to CAN bus
CANRX CANRX I Receive input pin from CAN bus
VDD VDD PWR Digital positive power supply.
VSS VSS PWR Ground

Legend: I= Input; O= Output; PWR= Power

Absolute Maximum Ratings
Supply Voltage..VSS-0.3V to 6.0V

Input Voltage.. VSS-0.3V to VDD+0.3V

Storage Temperature.. -50°C to 125°C

Operating Temperature.. -40°C to 125°C

IOL Total.. 80mA

IOH Total... -80mA

Total Power Dissipation.. 500mW

Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute Maximum
Ratings” may cause substantial damage to the device. Functional operation of this device at
other conditions beyond those listed in the specification is not implied and prolonged exposure
to extreme conditions may affect device reliability.

Rev. 1.30 6 March 31, 2023 Rev. 1.30 7 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

D.C. Characteristics
For data in the following tables, note that factors such as oscillator type, operating voltage, operating
frequency, pin load conditions, temperature and program instruction type, etc., can all exert an
influence on the measured values.

Operating Voltage Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage (HXT) —
fSYS=fHXT=8MHz 3.0 — 5.5 V
fSYS=fHXT=16MHz 3.0 — 5.5 V
fSYS=fHXT=24MHz 4.5 — 5.5 V

Operating Current Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

IDD
Operating Current
(HXT)

3V No load, all peripherals off,
fSYS=fHXT=8MHz

— 8 13 mA
5V — 13 18 mA
3V No load, all peripherals off,

fSYS=fHXT=16MHz
— 15 20 mA

5V — 25 30 mA
3V No load, all peripherals off,

fSYS=fHXT=24MHz
— 23 28 mA

5V — 38 41 mA

VIL

Input Low Voltage for
SSIF/CS/SCK/SCL/MOSI/SDA/IA0/IA1/
CANRX Pins

— — 0 — 0.2VDD V

Input Low Voltage for RES Pin — — 0 — 0.4VDD V

VIH

Input High Voltage for SSIF/CS/SCK/SCL/
MOSI/SDA/IA0/IA1/CANRX Pins — — 0.8VDD — VDD V

Input High Voltage for RES Pin — — 0.9VDD — VDD V

IOL

Sink Current for MISO/SDA/RMXINT/
RM1INT/CANMINT/CLKOUT/SOF/
CANTX Pins

3V
VOL = 0.1VDD

4 8 — mA

5V 10 20 — mA

IOH

Source Current for MISO/SDA/RMXINT/
RM1INT/CANMINT/CLKOUT/SOF/
CANTX Pins

3V
VOH=0.9VDD

-2 -4 — mA

5V -5 -10 — mA

Standby Current Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Max.
85°C

Max.
105°C

Max.
125°C Unit

VDD Conditions

ISTB

Standby Current
(SLEEP mode)

3V
No load, all peripherals off

— — 1 1 3 5 μA
5V — — 2 2 5 8 μA

Standby Current
(IDLE mode)

3V No load, all peripherals off,
fSYS=fHXT=8MHz

— — 1 1 1 1 mA
5V — — 1.5 1.5 1.5 1.5 mA
3V No load, all peripherals off,

fSYS=fHXT=16MHz
— — 1.2 1.2 1.2 1.2 mA

5V — — 2.2 2.2 2.2 2.2 mA
3V No load, all peripherals off,

fSYS=fHXT=24MHz
— — 1.8 1.8 1.8 1.8 mA

5V — — 2.8 2.8 2.8 2.8 mA

Rev. 1.30 6 March 31, 2023 Rev. 1.30 7 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

A.C. Characteristics
For data in the following tables, note that factors such as oscillator type, operating voltage, operating
frequency and temperature etc., can all exert an influence on the measured values.

System Frequency Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

fSYS System clock (HXT)
3.0V~5.5V fSYS=fHXT=8MHz — 8 — MHz
3.0V~5.5V fSYS=fHXT=16MHz — 16 — MHz
4.5V~5.5V fSYS=fHXT=24MHz — 24 — MHz

Timing Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

tRES External Reset Minimum Low Pulse Width — — 10 — — μs

tSTART(HXT) HXT Oscillator Startup Time
3V

fSYS=fHXT=16MHz
— — 25 ms

5V — — 10 ms

fI2C

I2C Standard Mode (100kHz) fSYS Frequency 3.0V~
5.5V

No clock debounce 2 — — MHz
2 system clock debounce 4 — — MHz
4 system clock debounce 8 — — MHz

I2C Fast Mode (400kHz)
fSYS Frequency

3.0V~
5.5V

No clock debounce 5 — — MHz
2 system clock debounce 10 — — MHz
4 system clock debounce 20 — — MHz

fSPI SPI Mode Frequency — — — — 10 MHz

tITO I2C Timeout Period 3.0V~
5.5V fSYS=fHXT=16MHz 40 — — ms

tSOF SOF signal width — fSYS=fHXT=24MHz,
SOFT[2:0]=101 9.6 10.6 11.6 μs

CAN Electrical Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VDD Operating Voltage (HXT)
— fCAN=8MHz 3.0 — 5.5 V
— fCAN=16MHz 3.0 — 5.5 V
— fCAN=24MHz 4.5 — 5.5 V

fCAN System Clock (HXT)
3.0V~5.5V

—
— 8 — MHz

3.0V~5.5V — 16 — MHz
4.5V~5.5V — 24 — MHz

fMCLK Memory Clock (HXT)
3.0V~5.5V

—
— 8 — MHz

3.0V~5.5V — 16 — MHz
4.5V~5.5V — 24 — MHz

Rev. 1.30 8 March 31, 2023 Rev. 1.30 9 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Power-on Reset Characteristics
Ta=-40°C~125°C, unless otherwise specified.

Symbol Parameter
Test Conditions

Min. Typ. Max. Unit
VDD Conditions

VPOR VDD Start Voltage to Ensure Power-on Reset — — — — 100 mV
RRPOR VDD Rising Rate to Ensure Power-on Reset — — 0.035 — — V/ms

tPOR
Minimum Time for VDD Stays at VPOR to Ensure
Power-on Reset — — 1 — — ms

VDD

tPOR RRPOR

VPOR

Time

Power Control Function
The device operating clock is from an external crystal oscillator, HXT. The oscillator can be enabled
or disabled using a register bit HXTEN. The clock which is a divided version of the system clock
can be output on the CLKOUT pin.

External Crystal Oscillator – HXT
There is a high frequency external crystal oscillator for this device. For most crystal oscillator
configurations, the simple connection of a crystal across OSC1 and OSC2 will create the necessary
phase shift and feedback for oscillation, without requiring external capacitors. It is recommended to
connect an 8MHz, 16MHz or 24MHz crystal to the HXT pins for applications.

For oscillator stability and to minimise the effects of noise and crosstalk, it is important to ensure
that the crystal and any associated resistors and capacitors along with interconnecting lines are all
located as close to the device as possible.

Note: 1. RP is normally not required
2. Although not shown OSC1/OSC2 pins have a parasitic
 capacitance of around 7pF.

To internal
circuits

Internal
Oscillator

Circuit

OSC1

OSC2

RFRP

CLKOUT Pin
The clock output pin, CLKOUT is provided to the users for use as a clock input for other devices.
The CLKOUT pin has an internal prescaler which can devide fSYS by 1, 2, 4 and 8. The prescaler is
selected via the FOCFG register. When clearing the HXTEN bit in the FOCFG register (ADDRESS
C0H) to zero, the HXT oscillator is off thus turning off the CLKOUT clock output.

Rev. 1.30 8 March 31, 2023 Rev. 1.30 9 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Prescaler

Oscillator

HXT

HXTEN

fSYS

FODIV1~FODIV0

fCLKO CLKOUT
fSYS/2

fSYS/4

fSYS/8

fSYS

fCAN

SPI

I2C

fSYS

fSYS

Writer Buffer
&

Data Check

C_CANCANEN

IDLE Mode
The IDLE Mode is entered when the HXTEN bit in the FOCFG register is high while the CANEN
bit in the CANCFG register is low. In the IDLE Mode the HXT oscillator is continue to provide a
clock. The C_CAN is disabled.

SLEEP Mode and Wake-up
The device has an internal SLEEP mode that is used to minimize the current consumption of the
device. In the SLEEP Mode the oscillator is turned off. If the I2C serial interface is selected, the I2C
interface debounce function will be disabled after entering the SLEEP Mode.

To enter the SLEEP mode, the HXTEN bit in the FOCFG register should be cleared to zero. The
master can wake up the device by sending a Wake-up command to set the HXTEN bit high and then
read the CRHH register (Address: 0x3B) which indicates whether the HXT oscillator is stable after
tSTART(HXT) time. If the CRHH has a value of 21H, it means the HXT oscillator is stable and the device
is success fully waked-up by the master MCU from the SLEEP mode.

START

Control Byte=110x xxxx
sent via the serial

interface

Waiting tSTART(HXT) for
HT45B3305H

HXT stable

Read CAN
CRHH register value

CRHH=0x21?

HT45B3305H
HXT is stable

Next step

Yes

No

MCU

START

Receive
Control Byte=

110x xxxx

I2C I/F? Turn off
Debounce function

HXT starts on and
wakes up CAN

END

HT45B3305H enters
SLEEP Mode

HXTEN=0

H/W sets HXTEN=1

Yes

No

HT45B3305H

Rev. 1.30 10 March 31, 2023 Rev. 1.30 11 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Functional Description
The Controller Area Network, or CAN bus for short, is a standard communication protocol used
originally designed for automotive networking applications, however it is also used in other
application areas such as industrial automation and some entertainment products. It is a two wire
serial bus to which the CAN bus equipped products are connected together using twisted pair cable
with a characteristic impedence of 120Ω.

Write Buffer and Data Check
The device provides a 32-byte Write Buffer with Data check function to easier the communication with
Host MCUs and reduce the number of the interface pins between the peripheral device and its Host MCU.

WRBUF &
DTACHK

C_CANMCU

HT8
I/F

SPI
I/F

I2C
I/F

The device contains two sets of interface modules which are the four line SPI interface and the two
line I2C interface, to allow an easy method of communication with external Master devices. Having
relatively simple communication protocols, these serial interface types allow the device to interface
to external SPI or I2C based microcontrollers. The choice of whether the SPI or I2C type is used is
made using the SSIF pin input signal and with the RES pin low. Users can choose using SPI or I2C
serial interface for the data transfer, based on their MCU support interfaces and application speed
requirements.

SSIF pin should connect a 500kΩ pull-low resistor. Communication interface switching is
implemented via this pin. During the device reset period which is caused by keeping the RES pin
low, the SSIF pin input can be used to select the serial interface used with the master. The selections
are shown in the following table.

When release the RES pin, the external reset is

RES & SSIF Conditions Selected Interface
RES=Low, SSIF=Low SPI interface
RES=Low, SSIF=High I2C interface

Interface Selections

The 32-byte Writter Buffer can be used to store the Control byte, Register Address byte and up to 31
bytes Data which are received or to be transmit in a communication.

I2C
Logic

SPI
Logic Write buffer &

Data check
Protocol

Logic

Write Buffer
WDBUF0

WDBUFm

Block Diagram

Rev. 1.30 10 March 31, 2023 Rev. 1.30 11 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

SPI and I2C Frame Fields
Following the Communication Protocol, the SPI or I2C frame should contain five data fields which
are Control Byte, Register Address, Control CheckSum, Data and Data CheckSum.

•	 A 1-byte control field, including:
	♦ A 3-bit control instruction code defining the operation command.
	♦ A 5-bit data length code bits defining the size (in bytes) of the data field.

•	 A 1-byte Register Address field, defining the start register address to read from or to write into

•	 A 1-byte Control CheckSum field, Detecting errors during the control byte and the address byte
transmission.The control checksum is based on a XOR operation

•	 A Data field of up to 31 bytes

•	 A 1-byte Data CheckSum field, Detecting errors during the data transmission.The control
checksum is based on a XOR operation of all write/read data.

Control Byte
For each data transfer, a Control Byte is initiated to specify which Instruction is executed and how
many bytes of data is transferred. The bit7~bit5 of the Control Byte, named INSTR[2:0], define the
instruction while the bit4~bit0 of the Control Byte, named SDLC[4:0], is the data length code for
setting the number of the data bytes to be received or transmitted.

•	Serial Data Length Code
The data byte numbers of 1~31 can be determined by programming the SDLC[4:0] bits in the
control byte.

SDLC[4:0] Serial Data Length Description
00000 Not Valid Not Valid

00001~11111 1~31 Valid programmed values 1~31

Note: The data length must be defined correctly when the INSTR[2:0] bits are set as 010 or 101. For
other instructions, the defining of the data length is not required.

•	Instruction Control Code
The instruction is determined by the INSTR bit field of the control byte.

INSTR[2:0] Instruction Description
000 or 001 or 011 Not Valid Not Valid
010 Write Data To write data to Buffer
100 Read Status Read HT45B3305H status
101 Read Data To read CAN register data
110 Wake Up Wake CAN Up

111 Reset Reset CAN Block(can_reset) - Resets
internal CAN registers to default state

Note: If set INSTR[2:0]=010 or 101, the SDLC[4:0] bits must be set correctly to define the length of
the data to be read or written.

Rev. 1.30 12 March 31, 2023 Rev. 1.30 13 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Instruction Description
The instruction byte is sent to the device via the SPI or I2C interface for different operations. Refer
to “SPI Interface Timing Diagram” or “I2C Interface Timing Diagram” for detailed input and output
timing diagram.

Write Data to Buffer
An instruction code of 010B should be transmitted to the device. The SDLC[4:0] bits in the control
byte must be programmed correctly to define the data length to be written. The Register Address
field defines the starting register address where the following data will be written into.The register
address is automatically incremented by one to store the next byte of data until all the data bytes are
written.

A byte Control byte, a byte address byte and the written data bytes will be written into the write
buffer. Each transmission of the control and address bytes is followed by a XOR checksum byte for
the control and address byte data. And another XOR checksum byte of the data bytes is transferred
after the transmission of the data field for detecting errors during the data transmission.

Read CAN Register Data
An instruction code of 101B should be transmitted to the device. The SDLC[4:0] bits in the control
byte must be programmed correctly to define the data length of reading CAN registers. The Address
field byte defines the starting address of the CAN registers that the master wanted to read from. A
control checksum byte which computes the exclusive or (XOR) of the control and address data is
transmitted for detecting the control and address byte errors. After the control byte, address byte and
the checksum byte are sent, the data stored in the registers at the selected starting address can stored
in the buffer. The internal register address is automatically incremented by one to read the data and
store it to the buffer until the defined SDLC[4+0] bytes of data all were read. And another checksum
byte which computes the XOR of the read data is following the data field for detecting data errors.
All the data will be shifed out on the MISO pin. Then the master can read the data.

Before reading out the required register data, the first byte read by the master is a simple status byte
which is used to determine whether the device is busy and the reading address is matched or not.
Different values of the first byte and the corresponding status they indicate are summaried in the
following table:

1st Byte= Description
Write Address It means the register address to read has been written correctly by the host MCU.

0xFD Control CheckSum error.
It means a error in writing the reading address

0xFE HT45B3305H Busy
Others Don’t care

The “Read CAN Register Data” instruction is used to read the device register content and provide
brief current error information about the device internal processing status such as access address
error and device busy status.

Rev. 1.30 12 March 31, 2023 Rev. 1.30 13 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Read Status
The Read Status Instruction allows single instruction access to some bits about the device status.

The part is selected by an instruction code of 100B transmitted to the device. After the read status
instruction is sent by the host, the device will return eight bits of data that contain the status.

Status Byte Description Initial Value

Bit7
HT45B3305H Buffer Busy flag bit

0: Ready
1: Busy

0

Bit6

Transfer Error
0: Normal
1: INSTR[2:0] value in Control Byte invalid or I2C time-out occurred if

I2C interface was selected

0

Bit5
Control CheckSum Error

0: Ok
1: Error

0

Bit4
Data CheckSum Error

0: Ok
1: Error

0

Bit3 Bit3 = Bit7 1
Bit2 Bit2 = Bit6 1
Bit1 Bit1 = Bit5 1
Bit0 Bit0 = Bit4 1

In the status byte, Bit3~Bit0 is the Bit3= Bit7, Bit2=Bit6, Bit1=Bit5 and Bit0=Bit4. This four bit feild
is for the purpose of detecting errors about the status bits. So the Checksum field can be omitted.

The Reading Status instruction should be executed in the following conditions:

•	 Before the initialisation after a reset, it needs first to determine whether the device is busy or not?

•	 Reading the device status instruction can be executed after writing data into important registers,
to confirm the data was written correctly.

•	 When using the “Read CAN Register Data” instruction, if the first byte data received by the
device has the value of 0xFD or 0xFE and users need complete error information, then the
“Read Status Instruction” can be used to determine the actual condition, such as the device busy,

Control CheckSum error, Transfer error or Data CheckSum error.

Wake CAN Up
If the HXTEN bit is cleared to zero, the HXT oscillator will stop and the device enters the Sleep
Mode. To wake up the device, an instruction code of 110B can be sent. Refer to the “SLEEP Mode
and Wake-up” section for detailed wake-up process.

It needs to note for the wake up instruction, the SDLC[4:0] bits in the Control field and the
following four fields which are Register Address, Control CheckSum, Data and Data CheckSum
are not required. But if the frame contains these four fields, the device will also save them into the
buffer without processing them and an error will not happen.

Reset CAN Block Instruction
The Reset CAN Block Instruction can be used to re-initialise the internal CAN registers of the
device to default state. Only an instruction code of 111B should be transmitted to the device for
the reset operation. The SDLC[4:0] bits in the Control field and the following four fields which are
Register Address, Control CheckSum, Data and Data CheckSum are not required. But if the frame
contains these four fields, the device will also store them into the buffer without processing them
and an error will not happen.

Rev. 1.30 14 March 31, 2023 Rev. 1.30 15 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

SPI Serial Interface
The device is designed to interface directly with the Serial Peripheral Interface (SPI) port available
on many microcontrollers. Commands and data are sent to the device via the MOSI pin, with data
being clocked in on the rising edge of SCK. Data is driven out by the device, on the MISO line,
on the falling edge of SCK. The CS pin must be held low while any operation is performed. When
raising the CS pin from low to high, the SPI Interface will be reset.

Note: Wait 10 HXT clocks for every 8 bits of command/position/data.

SPI Interface Timing Diagrams

Write Data to Buffer

CS

SCK

MISO

D0D7 D0

24

D7 D0A0MOSI A7D0D[7:5]=010

0 87 15

D7 D0

16 23

D7

Data#1..#N-1

Don't Care

……

…

Address Byte

……

……

Control Byte
Write Data

//

……

…… ……

Data#N
1≦N≦31

//

Control CheckSum = Control⊕Address
Data CheckSum = Write Data#1⊕…⊕Write Data#N

……

……

Data CheckSum

……

……

Control CheckSum

Write Data to Buffer Timing Diagram

Read Status

CS

SCK

MISO

D2=
/D6

0 87

D1=
/D5

D0=
/D4

MOSI D0D[7:5]=100

D7 D6 D5 D4 D3=
/D7

……

…

Control Byte
Read Status

Don't Care

Don't Care

Status

D[7]: CAN Buffer : [1]Busy, [0] Ready
D[6]: Transfer Error : [1]Not Valid, [0]Normal
D[5]: Control CheckSum : [1]Error, [0]Ok
D[4]: Data CheckSum : [1]Error, [0]Ok

Read Status Timing Diagram

Rev. 1.30 14 March 31, 2023 Rev. 1.30 15 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Read CAN Register Data

CS

SCK

MISO
D7 D0 D7 D0 D0D7 D0 D7

16

D7

24

D0

158 23

D[7:5]=101MOSI A7D0

31 32

A0

0 7

Don't Care

Control CheckSum

……

…

Address Byte

……

……

Control Byte
Write Reading

……

……

Data#1..N-1 DataCheckSum

…… …… ……

Data#N
1≦N≦31

Don't Care Don't Care

……

Don't Care

……

Don't Care

……

//

//
……

Matching Write Reading address : Control CheckSum OK
0xFD : Write Reading address Error
0xFE : Busy

Control CheckSum = Control⊕Address
Data CheckSum = Read Data#1⊕…⊕Read Data#N

Status

Read CAN Register Data Timing Diagram

I2C Serial Interface
During the device reset with the RES pin held low, setting the SSIF pin input high, then the I2C
interface function together with SCL and SDA pin functions are selected; the I2C interface is used
for communication with the master.

The I2CDEB1 and I2CDEB0 bits in the FOCFG register determine the debounce time of the I2C
interface. This uses the internal clock to in effect add a debounce time to the external clock to reduce
the possibility of glitches on the clock line causing erroneous operation. The debounce time, if
selected, can be chosen to be either 2 or 4 system clocks. There is also an option of no debounce can
be selected.

I2C Slave Address
The slave address byte is the first byte received following the START condition from the master
device. The first seven bits of the first byte make up the slave address. The eighth bit defines a read
or write operation to be performed. When this R/W bit is “0”, then a write operation is selected. A “1”
selects a read operation. The device address bits are “10101A1A0” where the “A1, A0” value should
be the IA1, IA0 pin external level. When an address byte is sent, the device compares the first seven
bits after the START condition. If they match, the device outputs an acknowledge on the SDA line.

I2C Slave Address definition:

IA1 Pin
Level

IA0 Pin
Level

I2C Slave Address
(10101A1A0)

Low Low 1010100
Low High 1010101
High Low 1010110
High High 1010111

I2C Timeout Function
In order to reduce the I2C data transfer problem due to reception of erroneous clock sources, a time-
out function is provided. When the device is receiving data via the I2C interface, a SCL low level
keeps for a time over the specified timeout period of tITO, the I2C interface will be reset.

Rev. 1.30 16 March 31, 2023 Rev. 1.30 17 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

I2C Interface Timing Diagrams

Write Data to Buffer

SCL

0
ACK

0
ACK

0
ACK

0
D0SDA A7A6 A0 D[7:5]=010 D0

/W
0

ACK
A0 D7 D0 D7

0
D0

0 6

ACK
0

7 8 9 16 17

D7 D0
ACK

0

35 36

ACK

18 25 26 27 34

D7

Data#1..#N-1

…

Address Byte

……

Control Byte
Write Data

//
……

Data#N
1≦N≦31

//

Control CheckSum = Control⊕Address
Data CheckSum = Write Data#1⊕…⊕Write Data#N

……

Data CheckSum

……

Control CheckSum

……

Slave Address
=10101A1A0

R/W

…… …… …… ……………………

 Master to SlaveMaster to Slave Slave to Master Slave to Master

Write Data to Buffer Timing Diagram

Read Status

SCL

0SDA A6 A0 D0
/W
0

ACK
0

D[7:5]=100

179 16

ACK

0 6 7 8

………

Slave Address
=10101A1A0

R/W

…………

Control Byte
Read Status

Wait 0 Clocks

SCL
14 15 1712 13

1

0 6 7 8 9 10 11

0
A6 A0

16

D1=
/D5

D0=
/D4

D3=
/D7D5

D2=
/D6D4SDA D7 D6

R
1

ACK
……

Slave Address
=10101A1A0

R/W NACK

……

D[7] : CAN Buffer : [1]Busy, [0] Ready
D[6] : Transfer Error : [1]Not Valid, [0]Normal
D[5] : Control CheckSum : [1]Error, [0]OK
D[4] : Data CheckSum : [1]Error, [0]OK

 Master to SlaveMaster to Slave Slave to Master Slave to Master

Read Status Timing Diagram

Read CAN Register Data

SCL
35

D[7:5]=101

18 25 26 27 34

D0

17

A6 A0

0 6 7 8 9 16

0
A0

ACK
0

ACK
0

D7SDA A7D0
/W
0

ACK
0

ACK
…

Address Byte

…… ……

Control CheckSum

……

Slave Address
=10101A1A0

R/W

Control Byte
Write Reading

Control CheckSum = Control⊕Address

…… …… …………

SCL

0
D7 D0

ACK
D0SDA D7 D0

R
1

ACK
0

A6 A0
ACK

0
D7 D0

ACK
0

D7
1

0 6 7 8 9 16 17 18

Data#1..#N-1

……
//

……

Data#N
1≦N≦31

//
……

Data CheckSum

……

Slave Address
=10101A1A0

R/W

Data CheckSum = Read Data#1⊕…⊕Read Data#NMatching Write Reading address : Control CheckSum OK
0xFD : Write Reading address Error
0xFE : Busy

NACK

…… …… ………………

 Master to SlaveMaster to Slave Slave to Master Slave to Master

Read CAN Register Data Timing Diagram

Rev. 1.30 16 March 31, 2023 Rev. 1.30 17 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

HT45B3305H CAN Block Diagram
The Holtek CAN Module licensed from Bosch which supports CAN communication with up to 8
byte data fields. The device implements the HT45B3305H CAN. As the same with the C_CAN,
the HT45B3305H CAN consists of the components CAN Core, Message RAM, Message Handler,
Interface Control Register sets. A HT-8 Interface to C_CAN generic interface is provided by the
HT45B3305H CAN, via which the external 8-bit MCUs could access the C_CAN registers.

Message
Handler

IF
 C

O
N

 R
E

G
 1

IF
 C

O
N

 R
E

G
 2

G
E

N
E

R
IC

 I/
F

CANTX

CANRX

can_addr

can_data_in

can_reset

fCAN

can_wr_b

CANMINT
can_int

CAN_CORE

fMCLK

can_select

RM1INT

Message
RAM

32×139-bits

D
i[138:0]

can_w
r

D
o[138:0]

A
[4:0]

RXOK
INTPND[1]

RMXINT

H
T-

8
I/F

 to

C
_C

A
N

 G
E

N
E

R
IC

 I/
F

M
U
X

RMFD[4:0]

can_rx

can_tx

can_sof

INTPND[32:1] 01

32
|

can_wait_b

C_CAN

5

32

can_wait_b

CANEN

can_clk

can_clk

SOF

HT45B3305H CAN Block Diagram

(1) C_CAN Core
Refer to the following Operating Description and Application section for further CAN module
operation details. In this section we give a description about the functional blocks of the C_CAN:

•	 CAN_Core
The CAN_Core performs communication according to the CAN protocol version 2.0 A, B and ISO
11898-1.

•	 Registers
All registers are used to control and to configure the module.

•	 Message Handler
The internal State Machine controls the data transfer between the RX/TX Shift Register of the
CAN_Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers. All functions concerning the handling of messages are
implemented in the Message Handler. Those functions are the acceptance filtering, the transfer
of messages between the CAN Core and the Message RAM, and the handling of transmission
requests as well as the generation of the module interrupt.

•	 Interface Control Register 1 and 2
The function of the two interface control register sets is identical (except in Basic mode).
The interface control register sets are used for the data transfer between the external bus and the
Message RAM.

•	 Message RAM Interface
Message RAM size: 139-bits×32

Rev. 1.30 18 March 31, 2023 Rev. 1.30 19 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

(2) Message RAM IP
•	 Stores 32 Message Objects and Identifier Masks.

•	 Each Message Object together with Identifier Mask has a length of 139 bits.

(3) HT-8 interface to C_CAN Generic Interface
•	 The external 8-bit microcontroller can access the C_CAN registers through this transform interface.

•	 By the firmware, the MCU defined the desired register address. It is only allowed to access
one register each time. To implement consecutive access operations, the address should be
incremented by one using the firmware.

Interrupt Output Pins
The device has three interrupt output pins, CANMINT, RM1INT and RMXINT, to be used to
indicate different conditions. When a CAN interrupt occurs, the CANMINT pin will be driven
an active level by the device. When a Message is received into Message Object 1 successfully, an
interrupt occurs and the RM1INT pin will output an active level. When a Message is received into
Message Object x successfully, an interrupt occurs and the RMXINT pin will output an active level.

Interrupt active level can be selected to be high or low using the FOCFG register bits.

Message RAM and FIFO Buffer Configuration
For communication on a CAN network, individual Message Objects are configured. The Message
Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message
RAM. The device includes a Message Memory capacity of 139-bit ×32 for storing 32 Message
Objects and Identifier Masks. A Message Objects and Identifier Masks is 139 bits which is shown in
the following table.

Structure of a Message Object in the Message RAM
MSKn28~00 MXTDn MDIRn UMASKn TXnIEN RXnIEN RMTnEN EOBn

IDn28~00 XTDn DIRn MSGnLST — — — DLCn[3:0]

DATA0 DATA1 DATA2 DATA3 DATA4 DATA5 DATA6 DATA7

MSKn28~00		 Identifier Mask
0: The corresponding bit in the identifier of the message object cannot inhibit the match

in the acceptance filtering
1: The corresponding identifier bit is used for acceptance filtering

IDn28~00	 Message Identifier
IDn28~IDn00: 29-bit Identifier (“Extended Frame”).
IDn28~IDn18: 11-bit Identifier (“Standard Frame”).

MXTDn	 Mask Extended Identifier
0: The extended identifier bit (IDE) has no effect on the acceptance filtering
1: The extended identifier bit (IDE) is used for acceptance filtering

Note: When 11-bit (“standard”) Identifiers are used for a Message Object, the
identifiers of received Data Frames are written into bits IDn28 to IDn18. For
acceptance filtering, only these bits together with MASK bits MSKn28 to
MSKn18 are considered.

XTDn	 Extended Identifier
0: The 11-bit (“standard”) Identifier will be used for this Message Object
1: The 29-bit (“extended”) Identifier will be used for this Message Object

Rev. 1.30 18 March 31, 2023 Rev. 1.30 19 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

MDIRn	 Mask Message Direction
0: The message direction bit (DIR) has no effect on the acceptance filtering
1: The message direction bit (DIR) is used for acceptance filtering

Note: The Arbitration Registers IDn28-00, XTDn, and DIRn are used to define
the identifier and type of outgoing messages and are used (together with the
mask registers MSKn28-00, MXTDn, and MDIRn) for acceptance filtering
of incoming messages. A received message is stored into the valid Message
Object with matching identifier and Direction=receive (Data Frame) or
Direction=transmit (Remote Frame). Extended frames can be stored only in
Message Objects with XTDn=one, standard frames in Message Objects with
XTDn=zero. If a received message (Data Frame or Remote Frame) matches with
more than one valid Message Object, it is stored into that with the lowest message
number. For details see chapter Acceptance Filtering of Received Messages.

DIRn	 Message Direction
0: Direction=receive: On TREQ, a Remote Frame with the identifier of this Message

Object is transmitted. On reception of a Data Frame with matching identifier, that
message is stored in this Message Object.

1: Direction=transmit: On TREQ, the respective Message Object is transmitted as a
Data Frame. On reception of a Remote Frame with matching identifier, the TREQ
bit of this Message Object is set (if RMTnEN=one).

UMASKn	 Use Acceptance Mask
0: MASK ignored.
1: Use MASK (MSKn28~00, MXTDn and MDIRn) for acceptance filtering.

If the UMASKn bit is set to one, the Message Object’s mask bits have to be
programmed during initialization of the Message Object before MSGnVA is set to one.

MSGnLST	 Message Lost (only valid for Message Objects with direction=receive)
0: No message lost since last time this bit was reset by the CPU.
1: The Message Handler stored a new message into this object when NDTA was still

set, the CPU has lost a message.
TXnIEN	 Transmit Interrupt Enable

0: INTPND will be left unchanged after the successful transmission of a frame.
1: INTPND will be set after a successful transmission of a frame.

RXnIEN	 Receive Interrupt Enable
0: INTPND will be left unchanged after a successful reception of a frame.
1: INTPND will be set after a successful reception of a frame.

RMTnEN	 Remote Enable
0: At the reception of a Remote Frame, TREQ is left unchanged.
1: At the reception of a Remote Frame, TREQ is set.

EOBn	 End of Buffer
0: Message Object belongs to a FIFO Buffer and is not the last Message Object of

that FIFO Buffer.
1: Single Message Object or last Message Object of a FIFO Buffer.

This bit is used to concatenate two ore more Message Objects (up to 32) to build a
FIFO Buffer.
For single Message Objects (not belonging to a FIFO Buffer) this bit must always be
set to one.

DLCn3~0	 Data Length Code
0~8: CAN: Frame has 0-8 data bytes
9~15: CAN: Frame has 8 data bytes

Note: The Data Length Code of a Message Object must be defined the same as in all
the corresponding objects with the same identifier at other nodes. When the
Message Handler stores a data frame, it will write the DLC to the value given
by the received message.

Rev. 1.30 20 March 31, 2023 Rev. 1.30 21 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

DATA0	 1st data byte of a CAN Data Frame
DATA1	 2nd data byte of a CAN Data Frame
DATA2	 3rd data byte of a CAN Data Frame
DATA3	 4th data byte of a CAN Data Frame
DATA4	 5th data byte of a CAN Data Frame
DATA5	 6th data byte of a CAN Data Frame
DATA6	 7th data byte of a CAN Data Frame
DATA7	 8th data byte of a CAN Data Frame

Note: Byte DATA0 is the first data byte shifted into the shift register of the CAN Core
during a reception, byte DATA7 is the last. When the Message Handler stores
a Data Frame, it will write all the eight data bytes into a Message Object. If the
Data Length Code is less than 8, the remaining bytes of the Message Object will
be overwritten by non specified values.

The 32 Message Objects can be configurated to several sets of FIFO buffer. A FIFO buffer can
have a single Message Object or several concatenated Message Objects. The FIFO threshold of
the Message Object number is determined by the RMFD[4:0] bits in the HT45B3305H CAN
Configuration Register, CANCFG. When the Message Object of the selected number is received
successfully, an interrupt active signal will output on the RMXINT pin.

HT45B3305H CAN Operating Modes
The Operating modes can be controlled by the registers. Detailed informations about the operating
modes refer to the following contents and the related registers.

Software Initialization
The software initialization is started by setting the bit INIT in the CAN Control Register, either by
software or by a hardware reset, or by going Bus_Off.

While INIT is set, all message transfered from and to the CAN bus is stopped, the status of the CAN
bus output can_tx is recessive (HIGH). The counters of the EML(Error Management Logic) are
unchanged. Setting INIT does not change any configuration register.

To initialize the CAN Controller, the CPU has to set up the Bit Timing Register and each Message
Object. If a Message Object is not needed, it is sufficient to set it’s MSGnVA bit to not valid.
Otherwise, the whole Message Object has to be initialized.

Access to the Bit Timing Register and to the BRP Extension Register for the configuration of the bit
timing is enabled when both bits INIT and CCE in the CAN Control Register are set.

Resetting INIT (by CPU only) finishes the software initialization. Afterwards the Bit Stream
Processor(BSP) synchronizes itself to the data transfer on the CAN bus by waiting for the
occurrence of a sequence of 11 consecutive recessive bits (≡ Bus Idle) before it can take part in
bus activities and starts the message transfer.

The initialization of the Message Objects is independent of INIT and can be done on the fly, but
the Message Objects should all be configured to particular identifiers or set to not valid before the
BSP starts the message transfer. To change the configuration of a Message Object during normal
operation, the CPU has to start by setting MSGnVA to not valid. When the configuration is
completed, MSGnVA is set to valid again.

Rev. 1.30 20 March 31, 2023 Rev. 1.30 21 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

CAN Message Transfer
Once the HT45B3305H CAN is initialized and INIT is reset to zero, the HT45B3305H CAN’s CAN
Core synchronizes itself to the CAN bus and starts the message transfer.

Received messages are stored into their appropriate Message Objects if they pass the Message
Handler’s acceptance filtering. The whole message including all arbitration bits, DLC and eight data
bytes is stored into the Message Object. If the Identifier Mask is used, the arbitration bits which are
masked to “don’t care” may be overwritten in the Message Object.

The CPU may read or write each message any time via the Interface Registers, the Message Handler
guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the CPU. If a permanent Message Object (arbitration and
control bits set up during configuration) exists for the message, only the data bytes are updated and
then TQnDTA bit is set to start the transmission. If several transmit messages are assigned to the
same Message Object (when the number of Message Objects is not sufficient), the whole Message
Object has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time, they are
transmitted subsequently according to their internal priority. Messages may be updated or set to
not valid any time, even when their requested transmission is still pending. The old data will be
discarded when a message is updated before its pending transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may be
requested autonomously by the reception of a remote frame with a matching identifier.

Note: Remote frames are always transmitted in Classical CAN format.

Disabled Automatic Retransmission
According to the CAN Specification (see ISO11898-1, 6.3.3 Recovery Management), the
HT45B3305H CAN provides means for automatic retransmission of frames that have lost arbitration
or that have been disturbed by errors during transmission. The frame transmission service will not be
confirmed to the user before the transmission is successfully completed. By default, this means for
automatic retransmission is enabled.

The Disabled Automatic Retransmission mode is enabled by programming bit DAR in the CAN
Control Register to ‘1’. In this operation mode the programmer has to consider the different
behaviour of bits TREQ and NDTA in the Control Registers of the Message Buffers:

•	 When a transmission starts, bit TREQ of the respective Message Buffer is reset, while bit NDTA
remains set.

•	 When the transmission completed successfully bit NDTA is reset.

When a transmission failed (lost arbitration or error) bit NDTA remains set. To restart the
transmission the CPU has to set TREQ back to ‘1’.

Rev. 1.30 22 March 31, 2023 Rev. 1.30 23 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Test Mode
The Test Mode is entered by setting bit TEST in the CAN Control Register to one. In Test Mode the
bits TX1, TX0, LBACK, SILENT and BASIC in the Test Register are writable. Bit RX monitors
the state of pin CANRX and therefore is only readable. All Test Register functions are disabled
when bit TEST is reset to zero. The Test Mode functions as described in the following subsections
are intended for device tests outside normal operation. These functions should be used carefully.
Switching between Test Mode functions and normal operation while communication is running
(INIT=‘0’) should be avoided.

Silent Mode
In ISO 11898-1, the Silent Mode is called the Bus Monitoring Mode. The CAN Core can be set in
Silent Mode by programming the Test Register bit SILENT to ‘1’.

In Silent Mode, the HT45B3305H CAN is able to receive valid data frames and valid remote frames,
but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN Core
is required to send a dominant bit (ACK bit, overload flag, active error flag), the bit is rerouted
internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in
recessive state. The Silent Mode can be used to analyse the traffic on a CAN bus without affecting it
by the transmission of dominant bits (Acknowledge Bits, Error Frames).

CAN Core

TX RX

CANRXCANTX

=1C_CAN

CAN Core in Silent Mode

Loop Back Mode
The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBACK to ‘1’.
In Loop Back Mode, the CAN Core treats its own transmitted messages as received messages and
stores them (if they pass acceptance filtering) into a Receive Buffer.

CAN Core

TX RX

C_CAN

CANRXCANTX

CAN Core in Loop Back Mode

This mode is provided for self-test functions. To be independent from external stimulation, the CAN
Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/remote
frame) in Loop Back Mode. In this mode the CAN Core performs an internal feedback from its TX
output to its RX input. The actual value of the CANRX input pin is disregarded by the CAN Core.
The transmitted messages can be monitored at the CANTX pin.

Rev. 1.30 22 March 31, 2023 Rev. 1.30 23 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Loop Back combined with Silent Mode
It is also possible to combine Loop Back Mode and Silent Mode by programming both bits LBACK
and SILENT to ‘1’ at the same time. This mode can be used for a “Hot Selftest”, meaning the CAN
can be tested without affecting a running CAN system connected to the pins CANTX and CANRX. In
this mode the CANRX pin is disconnected from the CAN Core and the CANTX pin is held recessive.

CAN Core

TX RX

CANRXCANTX

=1C_CAN

CAN Core in Loop Back combined with Silent Mode

Basic Mode
The CAN Core can be set in Basic Mode by programming the Test Register bit BASIC to ‘1’. In this
mode the CAN module runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1 Registers is
requested by writing the BUSYn bit of the IF1 Command Request Register to ‘1’. The IF1 Registers
are locked while the BUSYn bit is set. The BUSYn bit indicates that the transmission is pending. As
soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN Core and the
transmission is started. When the transmission has completed, the BUSYn bit is reset and the locked
IF1 Registers are released. A pending transmission can be aborted at any time by resetting the BUSYn
bit in the IF1 Command Request Register while the IF1 Registers are locked. If the CPU has reset the
BUSYn bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as Receive Buffer. After the reception of a message the contents of the
shift register is stored into the IF2 Registers, without any acceptance filtering. Additionally, the
actual contents of the shift register can be monitored during the message transfer. Each time a read
Message Object is initiated by writing the BUSYn bit of the IF2 Command Request Register to ‘1’,
the contents of the shift register is stored into the IF2 Registers.

In Basic Mode the evaluation of all Message Object related control and status bits and of the control
bits of the IFn Command Mask Registers is turned off. The message number of the Command
request registers is not evaluated. The NnDTA and MSGnLST bits of the IF2 Message Control
Register retain their function, DLCn3~DLCn0 will show the received DLC(Data Length Code), the
other control bits will be read as ‘0’.

In Basic Mode the ready output can_wait_b is not active.

Software control of Pin CANTX
Four output functions are available for the CAN transmit pin CANTX. Additionally to its default
function – the serial data output – it can drive the CAN Sample Point signal to monitor CAN_Core’s
bit timing and it can drive constant dominant or recessive values. The last two functions, combined
with the readable CAN receive pin CANRX, can be used to check the CAN bus’ physical layer.

The output mode of pin CANTX is selected by programming the Test Register bits TX1 and TX0.
The three test functions for pin CANTX interfere with all CAN protocol functions. CANTX must be
left in its default function when CAN message transfer or any of the test modes Loop Back Mode,
Silent Mode, or Basic Mode are selected.

Rev. 1.30 24 March 31, 2023 Rev. 1.30 25 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

CAN Application

Management of Message Objects
The configuration of the Message Objects in the Message RAM will (with the exception of the bits
MSGVA, NDTA, INTPND, and TREQ) not be affected by resetting the CAN. All the Message
Objects must be initialized by the CPU or they must be set not valid (MSGVA=0’). The bit timing
must be configured before the CPU clears the INIT bit in the CAN Control Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control and Data
field of one of the two interface register sets to the desired values. By writing to the corresponding
IFn Command Request Register, the IFn Message Buffer Registers are loaded into the addressed
Message Object in the Message RAM.

When the INIT bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and the Message Handler State Machine control the CAN’s internal
data flow. Received messages that pass the acceptance filtering are stored into the Message RAM,
messages with pending transmission request are loaded into the CAN_Core’s Shift Register and are
transmitted via the CAN bus.

The CPU reads received messages and updates messages to be transmitted via the IFn Interface
Registers. Depending on the configuration, the CPU is interrupted on certain CAN message and
CAN error events.

Message Handler State Machine
The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN Core,
the Message RAM and the IFn Registers.

The Message Handler FSM(Finite State Machine) controls the following functions:

•	 Data Transfer from IFn Registers to the Message RAM

•	 Data Transfer from Message RAM to the IFn Registers

•	 Data Transfer from Shift Register to the Message RAM

•	 Data Transfer from Message RAM to Shift Register

•	 Data Transfer from Shift Register to the Acceptance Filtering unit

•	 Scanning of Message RAM for a matching Message Object

•	 Handling of TREQ flags

•	 Handling of interrupts

Data Transfer from / to Message RAM
When the CPU initiates a data transfer between the IFn Registers and Message RAM, the Message
Handler sets the BUSYn bit in the respective IFn Command Request Register to ‘1’. After the
transfer has completed, the BUSYn bit is set back to ‘0’.

The respective IFn Command Mask Register specifies whether a complete Message Object or only
parts of it will be transferred. Due to the structure of the Message RAM it is not possible to write
single bits/bytes of one Message Object, it is always necessary to write a complete Message Object
to the Message RAM. Therefore the data transfer from the IFn Message Buffer Registers to the
Message RAM (TDnDIR=“1”) requires a read-modify-write cycle. First those parts of the Message
Object that are not to be changed are read from the Message RAM to the selected IFn Message
Buffer Registers and then the complete contents of the selected IFn Message Buffer Registers are
written to the Message Object.

Rev. 1.30 24 March 31, 2023 Rev. 1.30 25 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

START

Write Command
Request Register

BUSYn = 1

TDnDIR = 1

Read Message
Object to IFn

Read Message
Object to IFn

Write IFn to
Message RAM

BUSYn = 0

YesNo

Yes

No

Data Transfer between IFn Registers and Message RAM

After a partial write of a Message Object (TDnDIR=“1”), the IFn Message Buffer Registers that are
not selected by the respective IFn Command Mask Register will be set to the actual contents of the
selected Message Object.

After a partial read of a Message Object (TDnDIR= “0”), the IFn Message Buffer Registers that are
not selected by the respective IFn Command Mask Register will be left unchanged.

Transmission of Messages
If the shift register of the CAN Core cell is ready for loading and if there is no data transfer between
the IFn Registers and Message RAM, the MSGVA bits in the Message Valid Register and the TREQ
bits in the Transmission Request Register are evaluated. The valid Message Object with the highest
priority pending transmission request is loaded into the shift register by the Message Handler and
the transmission is started. The Message Object’s NDTA bit is reset.

After a successful transmission and if no new data was written to the Message Object (NDTA =‘0’)
since the start of the transmission, the TREQ bit will be reset. If TXnIEN is set, INTPND will
be set after a successful transmission. If the CAN has lost the arbitration or if an error occurred
during the transmission, the message will be retransmitted as soon as the CAN bus is free again. If
meanwhile the transmission of a message with higher priority has been requested, the messages will
be transmitted in the order of their priority.

Acceptance Filtering of Received Messages
When the arbitration and control field (Identifier + DLC) of an incoming message is completely
shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler FSM (Finite State
Machine) starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is loaded
with the arbitration bits from the CAN Core shift register. Then the arbitration and mask fields
(including MSGVA, UMASKn, NDTA, and EOBn) of Message Object 1 are loaded into the
Acceptance Filtering unit and are compared with the arbitration field from the shift register. This is
repeated with each following Message Object until a matching Message Object is found or until the
end of the Message RAM is reached.

If a match occurs, the scanning is stopped and the Message Handler FSM (Finite State Machine)
proceeds depending on the type of frame (Data Frame or Remote Frame) received.

Rev. 1.30 26 March 31, 2023 Rev. 1.30 27 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Reception of Data Frame
The Message Handler FSM (Finite State Machine) stores the message from the CAN Core shift
register into the respective Message Object in the Message RAM. Not only the data bytes, but also
all arbitration bits and the Data Length Code are stored into the corresponding Message Object. This
is implemented to keep the data bytes connected with the identifier even if arbitration mask registers
are used.

The NDTA bit is set to indicate that new data (not yet seen by the CPU) has been received. The CPU
should reset NDTA when it reads the Message Object. If at the time of the reception, the NDTA bit
was already set, MSGLST is set to indicate that the previous data (supposedly not seen by the CPU)
is lost. If the RXnIE bit is set, the INTPND bit is set, causing the Interrupt Register to point to this
Message Object.

The TREQ bit of this Message Object is reset to prevent the transmission of a Remote Frame, while
the requested Data Frame has just been received.

Reception of Remote Frame
When a Remote Frame is received, three different configurations of the matching Message Object
have to be considered:

1) DIRn=‘1’ (direction=transmit), RMTnEN=‘1’, UMASKn=‘1’ or ’0’
At the reception of a matching Remote Frame, the TREQ bit of this Message Object is set high.
The rest of the Message Object remains unchanged.

2) DIRn=‘1’ (direction=transmit), RMTnEN=‘0’, UMASKn=‘0’
At the reception of a matching Remote Frame, the TREQ bit of this Message Object remains
unchanged; the Remote Frame is ignored.

3) DIRn=‘1’ (direction=transmit), RMTnEN=‘0’, UMASKn=’1’

At the reception of a matching Remote Frame, the TREQ bit of this Message Object is reset. The
arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored into the
Message Object in the Message RAM and the NDTA bit of this Message Object is set high.

Note: Remote frames are always transmitted in Classical CAN format.

Receive / Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number. Message
Object 1 has the highest priority, while Message Object 32 has the lowest priority. If more than one
transmission request is pending, they are serviced according to the priority of the corresponding
Message Object.

Configuration of a Transmit Object
MSGnVA ARBn — DATA MASK EOBn DIRn

1 appl. — appl. appl. 1 1
NnDTA MSGnLST RXnIEN TXnIEN INTnPND RMTnEN TnREQ

0 0 0 appl. 0 appl. 0

Note: “appl.” means by application.
Initialisation of a Transmit Object

The Arbitration Registers (IDn28~00 and XTDn bit) are given by the application. They define the
identifier and type of the outgoing message. If an 11-bit Identifier (“Standard Frame”) is used, it is
programmed to IDn28~IDn18, IDn17~IDn00 can then be disregarded.

Rev. 1.30 26 March 31, 2023 Rev. 1.30 27 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

If the TXnIEN bit is set, the INTPND bit will be set after a successful transmission of the Message
Object.

If the RMTnEN bit is set, a matching received Remote Frame will cause the TREQ bit to be set;
the Remote Frame will autonomously be answered by a Data Frame.

The Data Registers (DLCn3-0, DATA0-7) are given by the application, TnREQ and RMTnEN
may not be set before the data is valid.

The Mask Registers (MSKn28-00, UMASKn, MXTDn and MDIRn bits) may be used
(UMASKn=’1’) to allow groups of Remote Frames with similar identifiers to set the TnREQ bit.
The DIRn bit should not be masked.

Updating a Transmit Object
The CPU may update the data bytes of a Transmit Object any time via the IFn Interface registers,
neither MSGVA nor TREQ have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFn
DATAnA Register or IFn DATAnB Register have to be valid before the content of that register
is transferred to the Message Object. Either the CPU has to write all four bytes into the IFn Data
Register or the Message Object is transferred to the IFn Data Register before the CPU writes the
new data bytes.

When only the (eight) data bytes are updated, first 0x87 is written to the IFn Command Mask
Register and then the number of the Message Object is written to the IFn Command Request
Register, concurrently updating the data bytes and setting TQnDTA.

To prevent the reset of TREQ at the end of a transmission that may already be in progress while the
data is updated, NDTA has to be set together with TREQ.

When NDTA is set together with TREQ, NDTA will be reset as soon as the new transmission has
started.

Configuration of a Receive Object

MSGnVA ARBn — DATA MASK EOBn DIRn
1 appl. — appl. appl. 1 0

NnDTA MSGnLST RXnIEN TXnIEN INTnPND RMTnEN TnREQ
0 0 appl. 0 0 0 0

Note: “appl.” means by application.
Initialisation of a Receive Object

The Arbitration Registers (IDn[28:00] and XTDn bit) are given by the application. They define the
identifier and type of accepted received messages. If an 11-bit Identifier (“Standard Frame”) is used,
it is programmed to IDn28~IDn18, IDn17~IDn00 can then be disregarded. When a Data Frame
with an 11-bit Identifier is received, IDn17~IDn00 will be set to ‘0’.

If the RXnIEN bit is set, the INTPND bit will be set when a received Data Frame is accepted and
stored in the Message Object.

The Data Length Code (DLCn[3:0]) is given by the application. When the Message Handler stores
a Data Frame in the Message Object, it will store the received Data Length Code and eight data
bytes. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be
overwritten by non specified values.

Rev. 1.30 28 March 31, 2023 Rev. 1.30 29 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

The Mask Registers (MSKn[28:00], UMASKn, MXTDn, and MDIRn bits) may be used
(UMASKn=’1’) to allow groups of Data Frames with similar identifiers to be accepted . The DIRn
bit should not be masked in typical applications.

Handling of Received Messages
The CPU may read a received message any time via the IFn Interface registers. The data consistency
is guaranteed by the Message Handler state machine.

Typically the CPU will write first 0x7F to the IFn Command Mask Register and then the number of
the Message Object to the IFn Command Request Register. That combination will transfer the whole
received message from the Message RAM into the IFn Message Buffer Register. Additionally, the
bits NDTA and INTPND are cleared in the Message RAM (not in the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of the
matching messages has been received.

The actual value of NDTA shows whether a new message has been received since last time this
Message Object was read. The actual value of MSGLST shows whether more than one message
has been received since last time this Message Object was read. MSGLST will not be automatically
reset.

By means of a Remote Frame, the CPU may request another CAN node to provide new data for a
receive object. Setting the TREQ bit of a receive object will cause the transmission of a Remote
Frame with the receive object’s identifier. This Remote Frame triggers the other CAN node to start
the transmission of the matching Data Frame. If the matching Data Frame is received before the
Remote Frame could be transmitted, the TREQ bit is automatically reset.

Configuration of a FIFO Buffer
With the exception of the EOBn bit, the configuration of Receive Objects belonging to a FIFO
Buffer is the same as the configuration of a (single) Receive Object.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if used)
of these Message Objects have to be programmed to matching values. Due to the implicit priority of
the Message Objects, the Message Object with the lowest number will be the first Message Object
of the FIFO Buffer. The EOBn bit of all Message Objects of a FIFO Buffer except the last have to
be programmed to zero. The EOBn bits of the last Message Object of a FIFO Buffer is set to one,
configuring it as the End of the Block.

Reception of Messages with FIFO Buffers
Received messages with identifiers matching to a FIFO Buffer are stored into a Message Object of
this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored into a Message Object of a FIFO Buffer the NDTA bit of this Message
Object is set. By setting NDTA while EOBn is zero the Message Object is locked for further write
accesses by the Message Handler until the CPU has written the NDTA bit back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is reached.
If none of the preceding Message Objects is released by writing NDTA to zero, all further messages
for this FIFO Buffer will be written into the last Message Object of the FIFO Buffer and therefore
overwrite previous messages.

Rev. 1.30 28 March 31, 2023 Rev. 1.30 29 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Reading from a FIFO Buffer
When the CPU transfers the contents of Message Object to the IFn Message Buffer Registers
by writing its number to the IFn Command Request Register, the corresponding IFn Command
Mask Register should be programmed the way that bits NDTA and INTPND are reset to zero
(TQnDTA=‘1’ and CINTPNDn=‘1’). The values of these bits in the IFn Message Control Register
always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the CPU should read out the Message Objects
starting at the FIFO Object with the lowest message number.

The following figure shows how a set of Message Objects which are concatenated to a FIFO Buffer
can be handled by the CPU.

START

Read Interrupt Pointer
(INTRH&INTRL Regs.)

case Interrupt Pointer

MessageNum = INTID

Write MessageNum to IFn Command Request
(Read Message to IFn Registers,

Reset NDTA = 0,
Reset INTPND = 0)

Status Change
Interrupt Handling END

Read IFn Message Control

NDTA = 1

Read Data from IFn DataA,B

EOBn = 1

MessageNum = MessageNum + 1

Message Interrupt

INTID=0x0000h

else

No

Yes

Yes

No

INTID=0x8000h

CPU Handling of a FIFO Buffer

Rev. 1.30 30 March 31, 2023 Rev. 1.30 31 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Bit Time and Bit Rate
CAN supports bit rates in the range of 1 kBit/s to 1000 kBit/s. Each member of the CAN network
has its own clock generator, usually a quartz oscillator. The timing parameter of the bit time (i.e. the
reciprocal of the bit rate) can be configured individually for each CAN node, creating a common bit
rate even though the CAN nodes’ oscillator periods (fOSC) may be different.

The frequencies of these oscillators are not absolutely stable, small variations are caused by changes
in temperature or voltage and by deteriorating components. As long as the variations remain inside a
specification oscillator tolerance range (dF), the CAN nodes are able to compensate for the different
bit rates by resynchronising to the bit stream.

According to the CAN specification, the bit time is divided into four segments which are the
Synchronisation Segment, the Propagation Time Segment, the Phase Buffer Segment 1 and the
Phase Buffer Segment 2. Each segment consists of a specification, programmable number of time
quanta. The length of the time quantum (tq), which is the basic time unit of the bit time, is defined
by the CAN controller’s system clock fSYS and the Baud Rate Prescaler (BRP): tq=BRP / fSYS. The
CAN’s system clock fSYS is the frequency of its can_clk input.

The Synchronisation Segment Sync_Seg is that part of the bit time where edges of the CAN bus
level are expected to occur; the distance between an edge that occurs outside of Sync_Seg and
the Sync_Seg is called the phase error of that edge. The Propagation Time Segment Prop_Seg is
intended to compensate for the physical delay times within the CAN network. The Phase Buffer
Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point. The (Re-) Synchronisation Jump
Width (SJW) defines how far a resynchronisation may move the Sample Point inside the limits
defined by the Phase Buffer Segments to compensate for edge phase errors.

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg2

Nominal CAN Bit Time

1 Time Quantum
(tq) Sample Point

Bit Timing

Parameter Range Remark
BRP [1 .. 32] Defines the length of the time quantum tq

Sync_Seg 1 tq Fixed length, synchronisation of bus input to CAN system clock
Prop_Seg [1 .. 8] tq Compensates for the physical delay times
Phase_Seg1 [1 .. 8] tq May be lengthened temporarily by synchronisation
Phase_Seg2 [1 .. 8] tq May be shortened temporarily by synchronisation
SJW [1 .. 4] tq May not be longer than either Phase Buffer Segment
This table describes the minimum programmable ranges required by the CAN protocol

mtq (minimum time quantum) = system clock period = 1/fSYS

tq (time quantum) = (BRPE[3:0] × 0x40 + BRP[5:0] + 1) × mtq

SYNC_SEG = 1 tq

SEG1 = PROP_SEG + PHASE_SEG1

Bit Time = tSYNC_SEG + tSEG1 + tPHASE_SEG2

Rev. 1.30 30 March 31, 2023 Rev. 1.30 31 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

For example:

fSYS=8MHz , Bit Rate=500Kbps , PROP_SEG=0 , Sample point=50% , SYNC_SEG=1 tq, then to
calculate the SEG1 & PHASE_SEG2 values.

Sol: mtq = 1/fSYS = 1/8MHz = 0.125μs

set Baud Rate Prescaler(BRP) = 1 → BRP[5:0] = (1−1) = 0#

tq = (BRPE[3:0] • 0x40 + BRP[5:0]+1) • mtq = 1 • mtq = 0.125μs

Bit Time = 1/Bit Rate = 1/500Kbps = 0.002ms = 2μs

Nominal Bit Time = Bit Rate/tq = 2µs/(0.125µs) = 16tq

(1) PHASE_SEG2 = Nominal Bit Time − (Nominal

 Bit Time • Sample point) = 16tq − (16tq • 50%) =

 16tq − 8tq = 8tq

 TSG2D[2:0] = (8−1) = 7 #

(2) SEG1=(Nominal Bit Time − SYNC_SEG − PHASE_SEG2)=(16tq–1tq–8tq)=7tq

 TSG1D[3:0]=(7−1)=6 #

Register Description
The device is controlled using a series of registers which are described in the following section.

Register Map
The following shows the full register bit map of the device.

Note that the symbol “−” represents an unimplemented bit which is read as zero.

Address Register
Name

Bit

7 6 5 4 3 2 1 0
0x00 CTRLRL TEST CCE DAR — EIE SIE CANIE INIT
0x02 STATRL BOFF EWARN EPASS RXOK TXOK LEC2 LEC1 LEC0
0x04 ERRCNTL TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0
0x05 ERRCNTH RP REC6 REC5 REC4 REC3 REC2 REC1 REC0
0x06 BTRL SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
0x07 BTRH — TSG2D2 TSG2D1 TSG2D0 TSG1D3 TSG1D2 TSG1D1 TSG1D0
0x08 INTRL INTID7 INTID6 INTID5 INTID4 INTID3 INTID2 INTID1 INTID0
0x09 INTRH INTID15 INTID14 INTID13 INTID12 INTID11 INTID10 INTID9 INTID8
0x0A TESTRL RX TX1 TX0 LBACK SILENT BASIC — —
0x0C BRPERL — — — — BRPE3 BRPE2 BRPE1 BRPE0
0x10 IF1CREQL — — MSG1N5 MSG1N4 MSG1N3 MSG1N2 MSG1N1 MSG1N0
0x11 IF1CREQH BUSY1 — — — — — — —
0x12 IF1CMSKL TD1DIR MASK1 ARB1 CTRL1 CINTPND1 TQ1DTA DATA1A DATA1B
0x14 IF1MSK1L MSK107 MSK106 MSK105 MSK104 MSK103 MSK102 MSK101 MSK100
0x15 IF1MSK1H MSK115 MSK114 MSK113 MSK112 MSK111 MSK110 MSK109 MSK108
0x16 IF1MSK2L MSK123 MSK122 MSK121 MSK120 MSK119 MSK118 MSK117 MSK116
0x17 IF1MSK2H MXTD1 MDIR1 — MSK128 MSK127 MSK126 MSK125 MSK124
0x18 IF1ARB1L ID107 ID106 ID105 ID104 ID103 ID102 ID101 ID100
0x19 IF1ARB1H ID115 ID114 ID113 ID112 ID111 ID110 ID109 ID108
0x1A IF1ARB2L ID123 ID122 ID121 ID120 ID119 ID118 ID117 ID116
0x1B IF1ARB2H MSG1VA XTD1 DIR1 ID128 ID127 ID126 ID125 ID124
0x1C IF1MCTRL EOB1 — — — DLC13 DLC12 DLC11 DLC10
0x1D IF1MCTRH N1DTA MSG1LST INT1PND UMASK1 TX1IEN RX1IEN RMT1EN T1REQ
0x1E IF1DTA1L D7 D6 D5 D4 D3 D2 D1 D0

Rev. 1.30 32 March 31, 2023 Rev. 1.30 33 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Address Register
Name

Bit

7 6 5 4 3 2 1 0

0x1F IF1DTA1H D7 D6 D5 D4 D3 D2 D1 D0
0x20 IF1DTA2L D7 D6 D5 D4 D3 D2 D1 D0
0x21 IF1DTA2H D7 D6 D5 D4 D3 D2 D1 D0
0x22 IF1DTB1L D7 D6 D5 D4 D3 D2 D1 D0
0x23 IF1DTB1H D7 D6 D5 D4 D3 D2 D1 D0
0x24 IF1DTB2L D7 D6 D5 D4 D3 D2 D1 D0
0x25 IF1DTB2H D7 D6 D5 D4 D3 D2 D1 D0

0x26~37 Note: Reserved, cannot be changed
0x38 CRLL DAY7 DAY6 DAY5 DAY4 DAY3 DAY2 DAY1 DAY0
0x39 CRLH MON7 MON6 MON5 MON4 MON3 MON2 MON1 MON0
0x3A CRHL SUBSTEP3 SUBSTEP2 SUBSTEP1 SUBSTEP0 YEAR3 YEAR2 YEAR1 YEAR0
0x3B CRHH REL3 REL2 REL1 REL0 STEP3 STEP2 STEP1 STEP0
0x40 IF2CREQL — — MSG2N5 MSG2N4 MSG2N3 MSG2N2 MSG2N1 MSG2N0
0x41 IF2CREQH BUSY2 — — — — — — —
0x42 IF2CMSKL TD2DIR MASK2 ARB2 CTRL2 CINTPND2 TQ2DTA DATA2A DATA2B
0x44 IF2MSK1L MSK207 MSK206 MSK205 MSK204 MSK203 MSK202 MSK201 MSK200
0x45 IF2MSK1H MSK215 MSK214 MSK213 MSK212 MSK211 MSK210 MSK209 MSK208
0x46 IF2MSK2L MSK223 MSK222 MSK221 MSK220 MSK219 MSK218 MSK217 MSK216
0x47 IF2MSK2H MXTD2 MDIR2 — MSK228 MSK227 MSK226 MSK225 MSK224
0x48 IF2ARB1L ID207 ID206 ID205 ID204 ID203 ID202 ID201 ID200
0x49 IF2ARB1H ID215 ID214 ID213 ID212 ID211 ID210 ID209 ID208
0x4A IF2ARB2L ID223 ID222 ID221 ID220 ID219 ID218 ID217 ID216
0x4B IF2ARB2H MSG2VA XTD2 DIR2 ID228 ID227 ID226 ID225 ID224
0x4C IF2MCTRL EOB2 — — — DLC23 DLC22 DLC21 DLC20
0x4D IF2MCTRH N2DTA MSG2LST INT2PND UMASK2 TX2IEN RX2IEN RMT2EN T2REQ
0x4E IF2DTA1L D7 D6 D5 D4 D3 D2 D1 D0
0x4F IF2DTA1H D7 D6 D5 D4 D3 D2 D1 D0
0x50 IF2DTA2L D7 D6 D5 D4 D3 D2 D1 D0
0x51 IF2DTA2H D7 D6 D5 D4 D3 D2 D1 D0
0x52 IF2DTB1L D7 D6 D5 D4 D3 D2 D1 D0
0x53 IF2DTB1H D7 D6 D5 D4 D3 D2 D1 D0
0x54 IF2DTB2L D7 D6 D5 D4 D3 D2 D1 D0
0x55 IF2DTB2H D7 D6 D5 D4 D3 D2 D1 D0
0x80 TREQR1L TREQ8 TREQ7 TREQ6 TREQ5 TREQ4 TREQ3 TREQ2 TREQ1
0x81 TREQR1H TREQ16 TREQ15 TREQ14 TREQ13 TREQ12 TREQ11 TREQ10 TREQ9
0x82 TREQR2L TREQ24 TREQ23 TREQ22 TREQ21 TREQ20 TREQ19 TREQ18 TREQ17
0x83 TREQR2H TREQ32 TREQ31 TREQ30 TREQ29 TREQ28 TREQ27 TREQ26 TREQ25
0x90 NEWDT1L NDTA8 NDTA7 NDTA6 NDTA5 NDTA4 NDTA3 NDTA2 NDTA1
0x91 NEWDT1H NDTA16 NDTA15 NDTA14 NDTA13 NDTA12 NDTA11 NDTA10 NDTA9
0x92 NEWDT2L NDTA24 NDTA23 NDTA22 NDTA21 NDTA20 NDTA19 NDTA18 NDTA17
0x93 NEWDT2H NDTA32 NDTA31 NDTA30 NDTA29 NDTA28 NDTA27 NDTA26 NDTA25
0xA0 INTPND1L INTPND8 INTPND7 INTPND6 INTPND5 INTPND4 INTPND3 INTPND2 INTPND1
0xA1 INTPND1H INTPND16 INTPND15 INTPND14 INTPND13 INTPND12 INTPND11 INTPND10 INTPND9
0xA2 INTPND2L INTPND24 INTPND23 INTPND22 INTPND21 INTPND20 INTPND19 INTPND18 INTPND17
0xA3 INTPND2H INTPND32 INTPND31 INTPND30 INTPND29 INTPND28 INTPND27 INTPND26 INTPND25
0xB0 MSGVAL1L MSGVA8 MSGVA7 MSGVA6 MSGVA5 MSGVA4 MSGVA3 MSGVA2 MSGVA1
0xB1 MSGVAL1H MSGVA16 MSGVA15 MSGVA14 MSGVA13 MSGVA12 MSGVA11 MSGVA10 MSGVA9
0xB2 MSGVAL2L MSGVA24 MSGVA23 MSGVA22 MSGVA21 MSGVA20 MSGVA19 MSGVA18 MSGVA17
0xB3 MSGVAL2H MSGVA32 MSGVA31 MSGVA30 MSGVA29 MSGVA28 MSGVA27 MSGVA26 MSGVA25
0xBF CANCFG D7 CANEN — RMFD4 RMFD3 RMFD2 RMFD1 RMFD0
0xC0 FOCFG I2CDEB1 I2CDEB0 RMXFIV RM1FIV CANIV HXTEN FODIV1 FODIV0
0xC1 SFIOSTC — SOFT2 SOFT1 SOFT0 — — CLKHST MISOHST

Rev. 1.30 32 March 31, 2023 Rev. 1.30 33 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Register Reset Condition
A Reset function is a fundamental part of the device ensuring the device can be set to some
predetermined condition irrespective of outside parameters.

To ensure reliable operation, it is important to know what condition the device registers is in after
a Power on Reset or an external RES pin reset or receive a “Reset Can Block” instruction. The
following table describes how the reset affects each of the internal registers.

Register Power On Reset / RES Reset / “Reset CAN Block” Instruction Reset
CTRLRL 0 0 0 - 0 0 0 1
STATRL 0 0 0 0 0 0 0 0
ERRCNTL 0 0 0 0 0 0 0 0
ERRCNTH 0 0 0 0 0 0 0 0
BTRL 0 0 0 0 0 0 0 1
BTRH - 0 1 0 0 0 11
INTRL 0 0 0 0 0 0 0 0
INTRH 0 0 0 0 0 0 0 0
TESTRL x 0 0 0 0 0 - -
BRPERL - - - - 0 0 0 0
IF1CREQL - - 0 0 0 0 0 1
IF1CREQH 0 - - - - - - -
IF1CMSKL 0 0 0 0 0 0 0 0
IF1MSK1L 1 1 1 1 1 1 1 1
IF1MSK1H 1 1 1 1 1 1 1 1
IF1MSK2L 1 1 1 1 1 1 1 1
IF1MSK2H 1 1 - 1 1 1 1 1
IF1ARB1L 0 0 0 0 0 0 0 0
IF1ARB1H 0 0 0 0 0 0 0 0
IF1ARB2L 0 0 0 0 0 0 0 0
IF1ARB2H 0 0 0 0 0 0 0 0
IF1MCTRL 0 - - - 0 0 0 0
IF1MCTRH 0 0 0 0 0 0 0 0
IF1DTA1L 0 0 0 0 0 0 0 0
IF1DTA1H 0 0 0 0 0 0 0 0
IF1DTA2L 0 0 0 0 0 0 0 0
IF1DTA2H 0 0 0 0 0 0 0 0
IF1DTB1L 0 0 0 0 0 0 0 0
IF1DTB1H 0 0 0 0 0 0 0 0
IF1DTB2L 0 0 0 0 0 0 0 0
IF1DTB2H 0 0 0 0 0 0 0 0
CRLL 0 0 1 0 0 111
CRLH 0 0 0 0 0 0 1 0
CRHL 0 0 0 0 0 1 0 1
CRHH 0 0 1 0 0 0 0 1
IF2CREQL - - 0 0 0 0 0 1
IF2CREQH 0 - - - - - - -
IF2CMSKL 0 0 0 0 0 0 0 0
IF2MSK1L 1 1 1 1 1 1 1 1
IF2MSK1H 1 1 1 1 1 1 1 1
IF2MSK2L 1 1 1 1 1 1 1 1

Rev. 1.30 34 March 31, 2023 Rev. 1.30 35 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Register Power On Reset / RES Reset / “Reset CAN Block” Instruction Reset
IF2MSK2H 1 1 - 1 1 1 1 1
IF2ARB1L 0 0 0 0 0 0 0 0
IF2ARB1H 0 0 0 0 0 0 0 0
IF2ARB2L 0 0 0 0 0 0 0 0
IF2ARB2H 0 0 0 0 0 0 0 0
IF2MCTRL 0 - - - 0 0 0 0
IF2MCTRH 0 0 0 0 0 0 0 0
IF2DTA1L 0 0 0 0 0 0 0 0
IF2DTA1H 0 0 0 0 0 0 0 0
IF2DTA2L 0 0 0 0 0 0 0 0
IF2DTA2H 0 0 0 0 0 0 0 0
IF2DTB1L 0 0 0 0 0 0 0 0
IF2DTB1H 0 0 0 0 0 0 0 0
IF2DTB2L 0 0 0 0 0 0 0 0
IF2DTB2H 0 0 0 0 0 0 0 0
TREQR1L 0 0 0 0 0 0 0 0
TREQR1H 0 0 0 0 0 0 0 0
TREQR2L 0 0 0 0 0 0 0 0
TREQR2H 0 0 0 0 0 0 0 0
NEWDT1L 0 0 0 0 0 0 0 0
NEWDT1H 0 0 0 0 0 0 0 0
NEWDT2L 0 0 0 0 0 0 0 0
NEWDT2H 0 0 0 0 0 0 0 0
INTPND1L 0 0 0 0 0 0 0 0
INTPND1H 0 0 0 0 0 0 0 0
INTPND2L 0 0 0 0 0 0 0 0
INTPND2H 0 0 0 0 0 0 0 0
MSGVAL1L 0 0 0 0 0 0 0 0
MSGVAL1H 0 0 0 0 0 0 0 0
MSGVAL2L 0 0 0 0 0 0 0 0
MSGVAL2H 0 0 0 0 0 0 0 0
CANCFG 1 0 - 0 0 0 0 0
FOCFG 0 0 0 0 0 1 0 0
SFIOSTC - 0 0 0 - - 0 0

Table Legend: “-” Unimplemented
 “x” Unknown

Rev. 1.30 34 March 31, 2023 Rev. 1.30 35 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Register Description
The following is the detailed register description. The registers are used for different functions.

Programmer’s Model
Register Description Note

CTRLRL CAN Control Register —
STATRL Status Register —
ERRCNTH/ ERRCNTL Error Counter Read only
BTRH/ BTRL Bit Timing Register Write enabled by CCE
INTRH/ INTRL Interrupt Register Read only
TESTRL Test Register Write enabled by TEST
BRPERL BRP Extension Register Write enabled by CCE
IF1CREQH/ IF1CREQL IF1 Command Request —
IF1CMSKL IF1 Command Mask —
IF1MSK1H/ IF1MSK1L IF1 Mask 1 —
IF1MSK2H/ IF1MSK2L IF1 Mask 2 —
IF1ARB1H/ IF1ARB1L IF1 Arbitration 1 —
IF1ARB2H/ IF1ARB2L IF1 Arbitration 2 —
IF1MCTRH/ IF1MCTRL IF1 Message Control —
IF1DTA1H/ IF1DTA1L IF1 Data A 1 —
IF1DTA2H/ IF1DTA2L IF1 Data A 2 —
IF1DTB1H/ IF1DTB1L IF1 Data B 1 —
IF1DTB2H/ IF1DTB2L IF1 Data B 2 —
IF2CREQH/ IF2CREQL IF2 Command Request —
IF2CMSKL IF2 Command Mask —
IF2MSK1H/ IF2MSK1L IF2 Mask 1 —
IF2MSK2H/ IF2MSK2L IF2 Mask 2 —
IF2ARB1H/ IF2ARB1L IF2 Arbitration 1 —
IF2ARB2H/ IF2ARB2L IF2 Arbitration 2 —
IF2MCTRH/ IF2MCTRL IF2 Message Control —
IF2DTA1H/ IF2DTA1L IF2 Data A 1 —
IF2DTA2H/ IF2DTA2L IF2 Data A 2 —
IF2DTB1H/ IF2DTB1L IF2 Data B 1 —
IF2DTB2H/ IF2DTB2L IF2 Data B 2 —
CRLH / CRLL Core Release Low Read only
CRHH/ CRHL Core Release High Read only
TREQR1H/ TREQR1L Transmission Request 1 Read only
TREQR2H/ TREQR2L Transmission Request 2 Read only
NEWDT1H/ NEWDT1L New Data 1 Read only
NEWDT2H/ NEWDT2L New Data 2 Read only
INTPND1H/ INTPND1L Interrupt Pending 1 Read only
INTPND2H/ INTPND2L Interrupt Pending 2 Read only
MSGVAL1H/ MSGVAL1L Message Valid 1 Read only
MSGVAL2H/ MSGVAL2L Message Valid 2 Read only
CANCFG HT45B3305H CAN Configuration —
FOCFG Device Output Configuration —
SFIOSTC Output pin Configuration —

Rev. 1.30 36 March 31, 2023 Rev. 1.30 37 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Device Output Configuration Register

•	FOCFG Register (ADDRESS: C0H)
Bit 7 6 5 4 3 2 1 0

Name I2CDEB1 I2CDEB0 RMXFIV RM1FIV CANIV HXTEN FODIV1 FODIV0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 1 0 0

Bit 7~6	 I2CDEB1~I2CDEB0: I2C Debounce Time Selection
00: No debounce
01: 2 system clock debounce
10: 4 system clock debounce
11: 4 system clock debounce

Note: When the device enters SLEEP Mode, the SCL and SDA lines will bypass
debounce circuit.

Bit 5	 RMXFIV: RMXINT interrupt output level selection
0: Active Low
1: Active High

Bit 4	 RM1FIV: RM1INT interrupt output level selection
0: Active Low
1: Active High

Bit 3	 CANIV: CANMINT interrupt output level selection
0: Active Low
1: Active High

Bit 2	 HXTEN: HXT oscillator enable control
0: Disable
1: Enable

Bit 1~0	 FODIV1~FODIV0: CLKOUT pin prescaler control
00: fCLKO=fSYS

01: fCLKO=fSYS/2
10: fCLKO=fSYS/4
11: fCLKO=fSYS/8

•	SFIOSTC Register
Bit 7 6 5 4 3 2 1 0

Name — SOFT2 SOFT1 SOFT0 — — CLKHST MISOHST
R/W — R/W R/W R/W — — R/W R/W
POR — 0 0 0 — — 0 0

Bit 7	 Unimplemented, read as “0”
Bit 6~4	 SOFT2~SOFT0: SOF signal width selection

SOF signal width=2[(SOFT[2:0]+3)]×(1/fHXT)
Here, SOFT[2:0]=000~111

Bit 3~2	 Unimplemented, read as “0”
Bit 1	 CLKHST: CLKOUT Pin output state for HALT mode

0: Output low
1: Output high

Bit 0	 MISOHST: MISO Pin output state for HALT mode
0: Output low
1: Output high

Note: At HXT off state, CANCFG, FOCFG & SFIOSTC SFRs can be writed, but cannot be read.

Rev. 1.30 36 March 31, 2023 Rev. 1.30 37 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

HT45B3305H CAN Configuration Register

•	CANCFG Register
Bit 7 6 5 4 3 2 1 0

Name D7 CANEN — RMFD4 RMFD3 RMFD2 RMFD1 RMFD0
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 1 0 — 0 0 0 0 0

Bit 7	 D7: Reserved, must be fixed at “1”
Bit 6	 CANEN: CAN Core Enable Control

0: Disable
1: Enable

When this bit is cleared to zero, CAN core remains in reset state and cannot be written in.
Bit 5	 Unimplemented, read as “0”
Bit 4~0	 RMFD4~RMFD0: Set receive FIFO threshold

0x00 : Message Object Number 32.
0x01~0x1F: Message Object Number 1 ~ Message Object Number 31.

These bits are used to select one of the Message Object Number 1~ Message Object
Number 32. When the selected Message Object received a Message successfully, a
interrrupt signal RMXINT will output on the RMXINT pin.

CAN Protocol Related Registers
These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

HT45B3305H CAN Control Registers
The contents of the control register are used to change the behavior of the device CAN operation.
Bits may be set or reset by the connected MCU via a SPI or I2C interface.

•	CTRLRL Register (ADDRESS: 0x00H)
Bit 7 6 5 4 3 2 1 0

Name TEST CCE DAR — EIE SIE CANIE INIT
R/W R/W R/W R/W — R/W R/W R/W R/W
POR 0 0 0 — 0 0 0 1

Bit 7	 TEST: Test Mode Enable Control
0: Normal Operation
1: Test Mode

Bit 6	 CCE: Configuration Change Enable
0: The CPU has no write access to protected register bits
1: While INIT=‘1’, the CPU has write access to protected register bits

Bit 5	 DAR: Disable Automatic Retransmission
0: Enable Automatic Retransmission of disturbed messages
1: Disable Automatic Retransmission of disturbed messages

Bit 4	 Unimplemented, read as “0”
Bit 3	 EIE: Error Interrupt Enable

0: Disabled - No Error Status Interrupt will be generated
1: Enabled - A change of bits BOFF or EWARN in the Status Register will cause

the Interrupt Register to be set to Status Interrupt (INTID15~INTID0=0x8000)
Bit 2	 SIE: Status Change Interrupt Enable

0: Disabled - No Status Change Interrupt will be generated
1: Enabled - The Interrupt Register will be set to Status Interrupt

(INTID15~INTID0=0x8000) when the CAN sets LEC[2:0] to a value ≠ 7

Rev. 1.30 38 March 31, 2023 Rev. 1.30 39 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Bit 1	 CANIE: Module Interrupt Enable
0: Disabled - Module Interrupt can_int is always inactive
1: Enabled - When the Interrupt Register is ≠ zero, the interrupt line can_int is set to

active. can_int remains active until all interrupts are processed (Interrupt Register
returns to zero)

Bit 0	 INIT: Initialization
0: Normal Operation
1: Initialization is started

The busoff recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened
by setting or resetting INIT. If the device goes busoff, it will set INIT of its own
accord, stopping all bus activities.
Once INIT has been cleared by the CPU, the device will then wait for 129 occurrences
of Bus Idle (129×11 consecutive recessive bits) before resuming normal operations. At
the end of the busoff recovery sequence, the Error Management Counters will be reset.

Test Register
Write access to the Test Register TESTRL is enabled by setting bit TEST in the HT45B3305H
CAN Control Register. The different test functions may be combined, but TX[1:0] ≠ “00” disturbs
message transfer. The TESTRL register should be cleared to zero before exiting the Test Mode.

•	TESTRL Register (ADDRESS: 0x0AH)
Bit 7 6 5 4 3 2 1 0

Name RX TX1 TX0 LBACK SILENT BASIC — —
R/W R R/W R/W R/W R/W R/W — —
POR x 0 0 0 0 0 — —

Bit 7	 RX: Monitors the actual value of the CANRX Pin
0: The CAN bus is dominant (CANRX=‘0’).
1: The CAN bus is recessive (CANRX=‘1’).

Note: The POR value of ‘x’ signifies the actual POR value of the CANRX pin.
Bit 6~5	 TX1~TX0: Control of CANTX pin

00: Reset value, CANTX is controlled by the CAN Core.
01: Sample Point can be monitored at CANTX pin
10: CANTX pin drives a dominant (‘0’) value.
11: CANTX pin drives a recessive (‘1’) value.

Bit 4	 LBACK: Loop Back Mode Control
0: Loop Back Mode is disabled.
1: Loop Back Mode is enabled.

Bit 3	 SILENT: Silent Mode Control
0: Normal operation.
1: The module is in Silent Mode.

Bit 2	 BASIC: Basic Mode Control
0: Basic Mode disabled.
1: Basic Mode, IF1 Registers used as TX Buffer, IF2 Registers used as RX Buffer.

Bit 1~0	 Unimplemented, read as “0”

Rev. 1.30 38 March 31, 2023 Rev. 1.30 39 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Status Register
The contents of the status register reflect the status of the HT45B3305H CAN. Some bits can only
be read while some are read/write bits.

•	STATRL Register (ADDRESS: 0x02H)
Bit 7 6 5 4 3 2 1 0

Name BOFF EWARN EPASS RXOK TXOK LEC2 LEC1 LEC0
R/W R R R R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7	 BOFF: Busoff Status
0: The CAN module is not busoff
1: The CAN module is in busoff state

Bit 6	 EWARN: Error Warning Status
0: Both error counters are below the error warning limit of 96
1: At least one of the error counters in the EML has reached the error warning limit of 96

Bit 5	 EPASS: Error Passive
0: The CAN Core is error active
1: The CAN Core is error passive as defined in the CAN Specification

Bit 4	 RXOK: Received a Message Successfully
0: Since this bit was last reset by the CPU, no message has been successfully received.
1: Since this bit was last reset by the CPU, a message has been successfully received

(independent of the result of acceptance filtering).
This RXOK bit is never reset by the CAN Core.

Bit 3	 TXOK: Transmitted a Message Successfully
0: Since this bit was reset by the CPU, no message has been successfully transmitted.
1: Since this bit was last reset by the CPU, a message has been successfully (error

free and acknowledged by at least one other node) transmitted
This TXOK bit is never reset by the CAN Core

Bit 2~0	 LEC2~LEC0: Last Error Code (Type of the last protocol event to occur on the CAN bus)
000: No Error

Message successfully transmitted or received.
001: Stuff Error

More than 5 equal bits in a sequence have occurred in a part of a received
message where this is not allowed.

010: Form Error
Fixed format part of a received frame has the wrong format.

011: AckError
The message this CAN Core transmitted was not acknowedged by another node.

100: Bit1Error
During the transmission of a message (with the exception of the arbitration
field), the device wanted to send a recessive level (bit of logical value ‘1’), but
the monitored bus value was dominant.

101: Bit0 Error
During the transmission of a message (or acknowledge bit, or active error flag,
or overload flag), the device wanted to send a dominant level (data or identifier
bit logical value ‘0’, but the monitored Bus value was recessive. During busoff
recovery this status is set each time a sequence of 11 recessive bits has been
monitored. This enables the CPU to monitor the proceeding of the busoff
recovery sequence (indicating the bus is not stuck at dominant or continuously
disturbed). During the waiting time after the resetting of INIT, each time a
sequence of 11 recessive bits has been monitored, a Bit0 Error code is written
to the Status Register, enabling the CPU to readily check up whether the
CAN bus is stuck at dominant or continuously disturbed and to monitor the
proceeding of the busoff recovery sequence.

Rev. 1.30 40 March 31, 2023 Rev. 1.30 41 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

110: CRC Error
The CRC check sum was incorrect in the message received, the CRC received
for an incoming wanted to send a recessive level (bit of logical value ‘1’), but
the monitored bus value was dominant.

111: No Change
When the LEC bit field shows the value ‘7’, no CAN bus event was
detected since the CPU wrote this value to the LEC bit field.

The LEC field holds a code which indicates the type of the last error to occur on
the CAN bus. This field will be cleared to ‘0’ when a message has been transferred
(reception or transmission) without error. The code ‘7’ may be written by the CPU to
check for updates.

Note: A Status Interrupt is generated by bits BOFF and EWARN (Error Interrupt) or by RXOK,
TXOK and LEC (Status Change Interrupt) assumed that the corresponding enable bits in the
CAN Control Register are set. A change of bit EPASS or a write to RXOK, TXOK or LEC
will never generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (INTID15~INTID0=0x8000) in the
Interrupt Register, if it is pending.

CAN Error Counter Registers

•	ERRCNTL Register (ADDRESS: 0x04H)
Bit 7 6 5 4 3 2 1 0

Name TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TEC0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 TEC7~TEC0: Transmit Error Counter
Actual state of the Transmit Error Counter.

•	ERRCNTH Register (ADDRESS: 0x05H)
Bit 7 6 5 4 3 2 1 0

Name RP REC6 REC5 REC4 REC3 REC2 REC1 REC0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7	 RP: Receive Error Passive
0: The Receive Error Counter is below the error passive level
1: The Receive Error Counter has reached the error passive level as defined in the

CAN Specification
Bit 6~0	 REC6~REC0: Receive Error Counter

Actual state of the Receive Error Counter.

Bit Timing Registers
The bit time is divided into four segments which are the Synchronisation Segment, the Propagation
Time Segment, the Phase Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists
of a specification, programmable number of time quanta. The length of the time quantum (tq), which
is the basic time unit of the bit time, is defined by the device HT45B3305H CAN controller’s system
clock fCAN and the Baud Rate Prescaler (BRP) and the BRP Extension Register.

The time quantum is defined as:

tq = (BRPE[3:0] × 0x40 + BRP[5:0] + 1) / fCAN

Where fCAN = HT45B3305H CAN module clock frequency

Rev. 1.30 40 March 31, 2023 Rev. 1.30 41 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

The contents of the BTRL register define the values of the Baud Rate Prescaler and the (Re)
Synchronisation Jump Width(SJW). The BTRH register bits define the length of the time segment
before and after the sample point. The registers are writable only when bits CCE and INIT in the
CAN Control Register are set.

•	BTRL Register (ADDRESS: 0x06H)
Bit 7 6 5 4 3 2 1 0

Name SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 1

Bit 7~6	 SJW1~SJW0: (Re)Synchronisation Jump Width
0x00~0x03: Valid programmed values are 0~3.

The actual interpretation by the hardware of this value is such that one more than the
value programmed here is used.

Bit 5~0	 BRP5~BRP0: Baud Rate Prescaler (CAN module value)
0x01~0x3F: The value by which the system clock frequency is divided for

generating the bit time quanta. The bit time is built up from a multiple
of this time quanta. Valid values for BRP[5:0] are 0~63.

The actual interpretation by the hardware of this value is such that one more than the
programmed value is used.

•	BTRH Register (ADDRESS: 0x07H)
Bit 7 6 5 4 3 2 1 0

Name — TSG2D2 TSG2D1 TSG2D0 TSG1D3 TSG1D2 TSG1D1 TSG1D0
R/W — R/W R/W R/W R/W R/W R/W R/W
POR — 0 1 0 0 0 1 1

Bit 7	 Unimplemented, read as "0"
Bit 6~4	 TSG2D2~TSG2D0: The time segment after the sample point

0x00~0x07: Valid values for TSG2D[2:0] are 0~7. The actual interpretation
by the hardware of this value is such that one more than the value
programmed here is used.

Bit 3~0	 TSG1D3~TSG1D0: The time segment before the sample point
0x01~0x0F: Valid values for TSG1D[3:0] are 1~15. The actual interpretation

by the hardware of this value is such that one more than the value
programmed here is used.

Note: If fCAN=8MHz, the reset value of BTRL=0x01 and BTRH=0x23 configures the
CAN for a bit rate of 500 kBit/s.

•	BRPERL Register (ADDRESS: 0x0CH)
This BRPERL register configures the BRP extension for Classic CAN operation. The register is
writable by setting CCE bit.

Bit 7 6 5 4 3 2 1 0
Name — — — — BRPE3 BRPE2 BRPE1 BRPE0
R/W — — — — R/W R/W R/W R/W
POR — — — — 0 0 0 0

Bit 7~4	 Unimplemented, read as "0"
Bit 3~0	 BRPE3~BRPE0: Baud Rate Prescaler Extension

0x00~0x0F: By programming BRPE[3:0] the Baud Rate Prescaler can be extended
to values up to 1023.

The actual interpretation by the hardware is that one more than the value programmed
by BRPE[3:0] (MSBs) and BRP[5:0] (LSBs) is used.

Rev. 1.30 42 March 31, 2023 Rev. 1.30 43 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Message Interface Registers
There are two sets of Interface Registers which are used to control the CPU access to the Message
RAM. The Interface Registers avoid conflicts between CPU access to the Message RAM and CAN
message reception and transmission by buffering the data to be transferred. A complete Message
Object or parts of the Message Object may be transferred between the Message RAM and the IFn
Message Buffer registers in one single transfer.
The function of the two interface register sets is identical (except for test mode Basic). They can be
used the way that one set of registers is used for data transfer to the Message RAM while the other
set of registers is used for the data transfer from the Message RAM, allowing both processes to be
interrupted by each other.
Each set of Interface Registers consists of Message Buffer Registers controlled by their own
Command Registers. The Command Mask Register specifies the direction of the data transfer and
which parts of a Message Object will be transferred. The Command Request Register is used to
select a Message Object in the Message RAM as target or source for the transfer and to start the
action specified in the Command Mask Register.

IF1 Register Set Description IF2 Register Set Description
IF1CREQH/ IF1CREQL IF1 Command Request IF2CREQH/IF2CREQL IF2 Command Request

IF1CMSKL IF1 Command Mask IF2CMSKL IF2 Command Mask
IF1MSK1H/ IF1MSK1L IF1 Mask 1 IF2MSK1H/IF2MSK1L IF2 Mask 1
IF1MSK2H/ IF1MSK2L IF1 Mask 2 IF2MSK2H/IF2MSK2L IF2 Mask 2
IF1ARB1H/ IF1ARB1L IF1 Arbitration 1 IF2ARB1H/IF2ARB1L IF2 Arbitration 1
IF1ARB2H/ IF1ARB2L IF1 Arbitration 2 IF2ARB2H/IF2ARB2L IF2 Arbitration 2
IF1MCTRH/ IF1MCTRL IF1 Message Control IF2MCTRH/IF2MCTRL IF2 Message Control
IF1DTA1H/ IF1DTA1L IF1 Data A1 IF2DTA1H/IF2DTA1L IF2 Data A1
IF1DTA2H/ IF1DTA2L IF1 Data A2 IF2DTA2H/IF2DTA2L IF2 Data A2
IF1DTB1H/ IF1DTB1L IF1 Data B1 IF2DTB1H/IF2DTB1L IF2 Data B1
IF1DTB2H/ IF1DTB2L IF1 Data B2 IF2DTB2H/IF2DTB2L IF2 Data B2

IF1 and IF2 Message Interface Register Sets

IFn Command Request Registers
A message transfer is started as soon as the CPU has written the message number to the Command
Request Register. With this write operation the BUSYn bit is automatically set to ‘1’ and output
can_wait_b is activated to notify the CPU that a transfer is in progress. After a wait time of 3 to 6
can_clk periods, the transfer between the Interface Register and the Message RAM has completed.
The BUSYn bit is set back to zero and can_wait_b is deactivated (see Module Integration Guide).

•	IFnCREQL Register
Bit 7 6 5 4 3 2 1 0

Name — — MSGnN5 MSGnN4 MSGnN3 MSGnN2 MSGnN1 MSGnN0
R/W — — R/W R/W R/W R/W R/W R/W
POR — — 0 0 0 0 0 1

Bit 7~6	 Unimplemented, read as “0”
Bit 5~0	 MSGnN5~MSGnN0: Message Number

0x00: Not a valid Message Number, interpreted as 0x20
0x01~0x20: Valid Message Number, the Message Object in the Message RAM is

selected for data transfer.
0x21~0x3F: Not a valid Message Number, interpreted as 0x01-0x1F

Note: When a Message Number that is not valid is written into the Command Request
Register, the Message Number will be transformed into a valid value and that
Message Object will be transferred.

Rev. 1.30 42 March 31, 2023 Rev. 1.30 43 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	IFnCREQH Register
Bit 7 6 5 4 3 2 1 0

Name BUSYn — — — — — — —
R/W R/W — — — — — — —
POR 0 — — — — — — —

Bit 7	 BUSYn: Busy Flag
0: Reset to zero when read/write action has finished.
1: Set to one when writing to the IFn Command Request Register.

Bit 6~0	 Unimplemented, read as “0”

IFn Command Mask Registers
The control bits of the IFn Command Mask Register specify the transfer direction and select which
of the IFn Message Buffer Registers as source or target of the data transfer.

•	IFnCMSKL Register
Bit 7 6 5 4 3 2 1 0

Name TDnDIR MASKn ARBn CTRLn CINTPNDn TQnDTA DATAnA DATAnB
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7	 TDnDIR: Write / Read Selection
0: Read - Transfer data from the Message Object addressed by the Command

Request Register into the selected Message Buffer Registers.
1: Write - Transfer data from the selected Message Buffer Registers to the Message

Object addressed by the Command Request Register.
The other bits of IFn Command MASKn Register have different functions depending
on the transfer direction:

Direction=Write (TDnDIR=1)

Bit 6	 MASKn: Access MASK Bits
0: MASK bits unchanged.
1: Transfer Identifier MASKn + MDIRn + MXTDn to Message Object.

Bit 5	 ARBn: Access Arbitration Bits
0: Arbitration bits unchanged.
1: Transfer Identifier + DIRn + XTDn + MSGnVA to Message Object.

Bit 4	 CTRLn: Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to Message Object.

Bit 3	 CINTPNDn: Clear Interrupt Pending Bit
0: INTPND bit remains unchanged.
1: Clear INTPND bit in the Message Object.

Note: When writing to a Message Object, this bit is ignored.
Bit 2	 TQnDTA: Access Transmission Request Bit

0: TREQ bit unchanged
1: Set TREQ bit

If a transmission is requested by programming bit TQnDTA in the IFn Command
Mask Register, bit TnREQ in the IFn Message Control Register will be ignored.

Bit 1	 DATAnA: Access Data Bytes 0-3
0: Data Bytes 0-3 unchanged.
1: Transfer Data Bytes 0-3 to Message Object.

Bit 0	 DATAnB: Access Data Bytes 4-7
0: Data Bytes 4-7 unchanged
1: Transfer Data Bytes 4-7 to Message Object.

Rev. 1.30 44 March 31, 2023 Rev. 1.30 45 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Direction=Read (TDnDIR=0)

Bit 6	 MASKn: Access MASK Bits
0: MASK bits unchanged.
1: Transfer Identifier MASKn + MDIRn + MXTDn to IFn Message Buffer Register.

Bit 5	 ARBn: Access Arbitration Bits
0: Arbitration bits unchanged.
1: transfer Identifier + DIRn + XTDn + MSGnVA to IFn Message Buffer Register.

Bit 4	 CTRLn: Access Control Bits
0: Control Bits unchanged.
1: Transfer Control Bits to IFn Message Buffer Register.

Bit 3	 CINTPNDn: Clear Interrupt Pending Bit
0: INTPND bit remains unchanged.
1: Clear INTPND bit in the Message Object.

Bit 2	 TQnDTA: Access New Data Bit
0: NDTA bit remains unchanged.
1: Clear NDTA bit in the Message Object.

Note: A read access to a Message Object can be combined with the reset of the control
bits INTnPND and NnDTA.The values of these bits transferred to the IFn
Message Control Register always reflect the status before resetting these bits.

Bit 1	 DATAnA: Access Data Bytes 0-3
0: Data Bytes 0-3 unchanged.
1: Transfer Data Bytes 0-3 to IFn Message Buffer Register.

Bit 0	 DATAnB: Access Data Bytes 4-7
0: Data Bytes 4-7 unchanged.
1: Transfer Data Bytes 4-7 to IFn Message Buffer Register.

IFn Message Buffer Registers
The bits of the Message Buffer registers mirror the Message Objects in the Message RAM.

•	IFnMSK1L Register
Bit 7 6 5 4 3 2 1 0

Name MSKn07 MSKn06 MSKn05 MSKn04 MSKn03 MSKn02 MSKn01 MSKn00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0	 MSKn07~MSKn00: Identifier MASK
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering.
1: The corresponding identifier bit is used for acceptance filtering.

•	IFnMSK1H Register
Bit 7 6 5 4 3 2 1 0

Name MSKn15 MSKn14 MSKn13 MSKn12 MSKn11 MSKn10 MSKn09 MSKn08
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0	 MSKn15~MSKn08: Identifier MASK
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering.
1: The corresponding identifier bit is used for acceptance filtering.

Rev. 1.30 44 March 31, 2023 Rev. 1.30 45 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	IFnMSK2L Register
Bit 7 6 5 4 3 2 1 0

Name MSKn23 MSKn22 MSKn21 MSKn20 MSKn19 MSKn18 MSKn17 MSKn16
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 1 1 1 1 1 1 1 1

Bit 7~0	 MSKn23~MSKn16: Identifier MASK
0: The corresponding bit in the identifier of the message object cannot inhibit the

match in the acceptance filtering.
1: The corresponding identifier bit is used for acceptance filtering.

•	IFnMSK2H Register
Bit 7 6 5 4 3 2 1 0

Name MXTDn MDIRn — MSKn28 MSKn27 MSKn26 MSKn25 MSKn24
R/W R/W R/W — R/W R/W R/W R/W R/W
POR 1 1 — 1 1 1 1 1

Bit 7	 MXTDn: MASK Extended Identifier
0: The extended identifier bit (IDE) has no effect on the acceptance filtering.
1: The extended identifier bit (IDE) is used for acceptance filtering.

Bit 6	 MDIRn: MASK Message Direction
0: The message direction bit (DIR) has no effect on the acceptance filtering.
1: The message direction bit (DIR) is used for acceptance filtering.

Bit 5	 Unimplemented, read as “1”
Bit 4~0	 MSKn28~MSKn24: Identifier MASK

0: The corresponding bit in the identifier of the message object cannot inhibit the
match in the acceptance filtering.

1: The corresponding identifier bit is used for acceptance filtering.

•	IFnARB1L Register
Bit 7 6 5 4 3 2 1 0

Name IDn07 IDn06 IDn05 IDn04 IDn03 IDn02 IDn01 IDn00
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 IDn07~IDn00: Message Identifier 7~0

•	IFnARB1H Register
Bit 7 6 5 4 3 2 1 0

Name IDn15 IDn14 IDn13 IDn12 IDn11 IDn10 IDn09 IDn08
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 IDn15~IDn8: Message Identifier 15~8

•	IFnARB2L Register
Bit 7 6 5 4 3 2 1 0

Name IDn23 IDn22 IDn21 IDn20 IDn19 IDn18 IDn17 IDn16
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 IDn23~IDn16: Message Identifier 23~16

Rev. 1.30 46 March 31, 2023 Rev. 1.30 47 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	IFnARB2H Register
Bit 7 6 5 4 3 2 1 0

Name MSGnVA XTDn DIRn IDn28 IDn27 IDn26 IDn25 IDn24
R/W RW RW RW R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7	 MSGnVA: Message Valid Bits (of all Message Objects)
0: This Message Object is ignored by the Message Handler
1: This Message Object is configured and should be considered by the Message

Handler
Bit 6	 XTDn: Extended Identifier

0: The 11-bit (“standard”) Identifier will be used for this Message Object.
1: The 29-bit (“extended”) Identifier will be used for this Message Object.

Bit 5	 DIRn: Message Direction
0: Direction=receive. On TREQ, a Remote Frame with the identifier of this Message

Object is transmitted. On reception of a Data Frame with matching identifier, that
message is stored in this Message Object.

1: Direction=transmit. On TREQ, the respective Message Object is transmitted as a
Data Frame. On reception of a Remote Frame with matching identifier, the TREQ
bit of this Message Object is set (if RMTnEN=1).

Bit 4~0	 IDn28~IDn24: Message Identifier 28~24

IFn Message Control Registers

•	IFnMCTRL Register
Bit 7 6 5 4 3 2 1 0

Name EOBn — — — DLCn3 DLCn2 DLCn1 DLCn0
R/W R/W — — — R/W R/W R/W R/W
POR 0 — — — 0 0 0 0

Bit 7	 EOBn: End of Buffer
0: Message Object belongs to a FIFO Buffer and is not the last Message Object of

that FIFO Buffer.
1: Single Message Object or last Message Object of a FIFO Buffer.

This bit is used to concatenate two or more Message Objects (up to 32) to build a
FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer), this bit
must always be set to one.

Bit 6~4	 Unimplemented, read as “0”
Bit 3~0	 DLCn3~DLCn0: Data Length Code

0~8: CAN: Frame has 0 ~ 8 data bytes
9~15: CAN: Frame has 8 data bytes

The Data Length Code of a Message Object must be defined the same as in all the
corresponding objects with the same identifier at other nodes.
When the Message Handler stores a data frame, it will write the DLCn to the value
given by the received message.

Rev. 1.30 46 March 31, 2023 Rev. 1.30 47 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	IFnMCTRH Register
Bit 7 6 5 4 3 2 1 0

Name NnDTA MSGnLST INTnPND UMASKn TXnIEN RXnIEN RMTnEN TnREQ
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7	 NnDTA: New Data Bits
0: No new data has been written into the data portion of this Message Object by the

Message Handler since last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object
Bit 6	 MSGnLST: Message Lost (only valid for Message Objects with direction=receive)

0: No message lost since last time this bit was reset by the CPU.
1: The Message Handler stored a new message into this object when NDTA was still

set, the CPU has lost a message.
Bit 5	 INTnPND: Interrupt Pending Bits

0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt. The Interrupt Identifier in the

Interrupt Register will point to this message object if there is no other interrupt
source with higher priority.

Bit 4	 UMASKn: Use Acceptance Mask
0: MASK ignored.
1: Use MASK (MSKn[28:00], MXTDn, and MDIRn) for acceptance filtering.

Bit 3	 TXnIEN: Transmit Interrupt Enable
0: INTPND will be left unchanged after the successful transmission of a frame.
1: INTPND will be set after a successful transmission of a frame.

Bit 2	 RXnIEN: Receive Interrupt Enable
0: INTPND will be left unchanged after a successful reception of a frame.
1: INTPND will be set after a successful reception of a frame.

Bit 1	 RMTnEN: Remote Enable
0: At the reception of a Remote Frame, TREQ is left unchanged.
1: At the reception of a Remote Frame, TREQ is set.

Bit 0	 TnREQ: Transmission Request Bits
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

Rev. 1.30 48 March 31, 2023 Rev. 1.30 49 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

IFn Data A and Data B Registers
In a CAN Data Frame, Data0 is the first, Data7 is the last byte to be transmitted or received. In
CAN’s serial bit stream, the MSB of each byte will be transmitted first.

DATA0: 1st data byte of a CAN Data Frame

DATA1: 2nd data byte of a CAN Data Frame

DATA2: 3rd data byte of a CAN Data Frame

DATA3: 4th data byte of a CAN Data Frame

DATA4: 5th data byte of a CAN Data Frame

DATA5: 6th data byte of a CAN Data Frame

DATA6: 7th data byte of a CAN Data Frame

DATA7: 8th data byte of a CAN Data Frame

The data bytes of CAN messages are stored in the IFn Message Buffer Registers in the following order:

•	IFnDTA1L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA0, 1st data byte of a CAN Data Frame

•	IFnDTA1H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA1, 2nd data byte of a CAN Data Frame

•	IFnDTA2L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA2, 3rd data byte of a CAN Data Frame

•	IFnDTA2H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA3, 4th data byte of a CAN Data Frame

Rev. 1.30 48 March 31, 2023 Rev. 1.30 49 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	IFnDTB1L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA4, 5th data byte of a CAN Data Frame

•	IFnDTB1H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA5, 6th data byte of a CAN Data Frame

•	IFnDTB2L Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA6, 7th data byte of a CAN Data Frame

•	IFnDTB2H Register
Bit 7 6 5 4 3 2 1 0

Name D7 D6 D5 D4 D3 D2 D1 D0
R/W R/W R/W R/W R/W R/W R/W R/W R/W
POR 0 0 0 0 0 0 0 0

Bit 7~0	 D7~D0: DATA7, 8th data byte of a CAN Data Frame
Note: Byte DATA0 is the first data byte shifted into the shift register of the CAN Core during a

reception, byte DATA7 is the last. When the Message Handler stores a Data Frame, it will
write all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the
remaining bytes of the Message Object will be overwritten by non specified values.

Message Handler Registers
All Message Handler registers are read-only. Their contents, which include the TREQ, NDTA,
INTPND, and MSGVA bits of each Message Object and the Interrupt Identifier) is status
information provided by the Message Handler FSM(Finite State Machine).

Interrupt Registers
The interrupt registers allow the identification of an interrupt source. When an interrupt occurs,
a CAN interrupt will be indicated to the CPU and an active interrupt level will output on the
CANMINT pin to inform users the HT45B3305H CAN interrupt.

The interrupt register appears to the CPU as a read only memory.

•	INTRL Register (ADDRESS: 0x08H)
Bit 7 6 5 4 3 2 1 0

Name INTID7 INTID6 INTID5 INTID4 INTID3 INTID2 INTID1 INTID0
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 INTID7~INTID0: Interrupt Identifier

Rev. 1.30 50 March 31, 2023 Rev. 1.30 51 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	INTRH Register (ADDRESS: 0x09H)
Bit 7 6 5 4 3 2 1 0

Name INTID15 INTID14 INTID13 INTID12 INTID11 INTID10 INTID9 INTID8
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 INTID15~INTID8: Interrupt Identifier
The interrupt identifier INTID[15:0] indicates the source of the interrupt.

INTID[15:0] Value Indicated Interrupt
0000H No interrupt is pending
0001H~0020H Number of Message Object which caused the interrupt
0021H~7FFFH Unused
8000H Status Interrupt
8001H~FFFFH Unused

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt
with the highest priority disregarding their chronological order. An interrupt remains pending
until the CPU has cleared it. If INTID15~INTID0 is different from 0x0000 and CANIE is set,
the CANMINT pin is driven an active level by the device and will remain the active level until
INTID15~INTID0 is back to value 0x0000 (the cause of the interrupt is reset) or until CANIE is
reset. The active HT45B3305H CAN interrupt level is determined by the CANIV bit in the FOCFG
register.

The Status Interrupt has the highest priority. Among the message interrupts, the Message Object’s
interrupt priority decreases with increasing message number.

A message interrupt is cleared by clearing the Message Object’s INTPND bit. The Status Interrupt
is cleared by reading the Status Register resp.

The Status Interrupt value 0x8000(INTID15~INTID0) indicates that an interrupt is pending because
the CAN Core has updated (not necessarily changed) the Status Register (Error Interrupt or Status
Interrupt). This interrupt has the highest priority. The CPU can update (reset) the Status Register bits
RXOK, TXOK and LEC by writing to the Status Register. A write access by the CPU to the Status
Registers can never generate or reset an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects, INTID
points to the pending message interrupt with the highest interrupt priority.

The CPU controls whether a change of the Status Registers may cause the Interrupt Register to
be set to INTID Status interrupt and whether the interrupt line becomes active when the Interrupt
Register is different from zero (bit CANIE in the CAN Control Register). The Interrupt Register
will be updated even when CANIE is not set.

The CPU has two possibilities to follow the source of a message interrupt. First it can follow the
INTID in the Interrupt Register and second it can poll the Interrupt Pending Register.

An interrupt service routine reading the message that is the source of the interrupt may read the
message and reset the Message Object’s INTPND at the same time (bit CINTPNDn in the IFn
Command Mask Register). When INTPND is cleared, the Interrupt Register will point to the next
Message Object with a pending interrupt.

Rev. 1.30 50 March 31, 2023 Rev. 1.30 51 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Transmission Request Registers
These registers hold the TREQ[32:0] bits of the 32 Message Objects. By reading out the TREQ[32:0]
bits, the CPU can check for which Message Object a Transmission Request is pending. The TREQ bit
of a specific Message Object can be set or reset by the CPU via the IFn Message Interface Registers or
by the Message Handler after reception of a Remote Frame or after a successful transmission.

•	TREQR1L Register (ADDRESS: 0x80H)
Bit 7 6 5 4 3 2 1 0

Name TREQ8 TREQ7 TREQ6 TREQ5 TREQ4 TREQ3 TREQ2 TREQ1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 TREQ8~TREQ1: Transmission Request Bits of Message Object 8 ~ Message Object 1
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

•	TREQR1H Register (ADDRESS: 0x81H)
Bit 7 6 5 4 3 2 1 0

Name TREQ16 TREQ15 TREQ14 TREQ13 TREQ12 TREQ11 TREQ10 TREQ9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 TREQ16~TREQ9: Transmission Request Bits of Message Object 16 ~ Message Object 9
0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

•	TREQR2L Register (ADDRESS: 0x82H)
Bit 7 6 5 4 3 2 1 0

Name TREQ24 TREQ23 TREQ22 TREQ21 TREQ20 TREQ19 TREQ18 TREQ17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 TREQ24~TREQ17: Transmission Request Bits of Message Object 24 ~ Message
Object 17

0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

•	TREQR2H Register (ADDRESS: 0x83H)
Bit 7 6 5 4 3 2 1 0

Name TREQ32 TREQ31 TREQ30 TREQ29 TREQ28 TREQ27 TREQ26 TREQ25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 TREQ32~TREQ25: Transmission Request Bits of Message Object 32 ~ Message
Object 25

0: This Message Object is not waiting for transmission.
1: The transmission of this Message Object is requested and is not yet done.

New Data Registers
These registers hold the NDTA bits of the 32 Message Objects. By reading out the NDTA bits, the
CPU can check for which Message Object the data portion was updated. The NDTA bit of a specific
Message Object can be set/reset by the CPU via the IFn Message Interface Registers or by the
Message Handler after reception of a Data Frame or after a successful transmission.

Rev. 1.30 52 March 31, 2023 Rev. 1.30 53 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	NEWDT1L Register
Bit 7 6 5 4 3 2 1 0

Name NDTA8 NDTA7 NDTA6 NDTA5 NDTA4 NDTA3 NDTA2 NDTA1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 NDTA8~NDTA1: New Data Bits of Message Object 8 ~ Message Object 1.
0: No new data has been written into the data portion of this Message Object by the

Message Handler since last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

•	NEWDT1H Register
Bit 7 6 5 4 3 2 1 0

Name NDTA16 NDTA15 NDTA14 NDTA13 NDTA12 NDTA11 NDTA10 NDTA9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 NDTA16~NDTA9: New Data Bits of Message Object 16 ~ Message Object 9.
0: No new data has been written into the data portion of this Message Object by the

Message Handler since last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

•	NEWDT2L Register
Bit 7 6 5 4 3 2 1 0

Name NDTA24 NDTA23 NDTA22 NDTA21 NDTA20 NDTA19 NDTA18 NDTA17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 NDTA24~NDTA17: New Data Bits of Message Object 24 ~ Message Object 17
0: No new data has been written into the data portion of this Message Object by the

Message Handler since last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

•	NEWDT2H Register
Bit 7 6 5 4 3 2 1 0

Name NDTA32 NDTA31 NDTA30 NDTA29 NDTA28 NDTA27 NDTA26 NDTA25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 NDTA32~NDTA25: New Data Bits of Message Object 32 ~ Message Object 25.
0: No new data has been written into the data portion of this Message Object by the

Message Handler since last time this flag was cleared by the CPU.
1: The Message Handler or the CPU has written new data into the data portion of

this Message Object.

Interrupt Pending Registers
These registers hold the INTPND bits of the 32 Message Objects. By reading out the INTPND bits,
the CPU can check for which Message Object an interrupt is pending. The INTPND bit of a specific
Message Object can be set/reset by the CPU via the IFn Message Interface Registers or by the
Message Handler after reception or after a successful transmission of a frame. This will also affect
the value of INTID in the Interrupt Register.

Rev. 1.30 52 March 31, 2023 Rev. 1.30 53 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

•	INTPND1L Register (ADDRESS: 0xA0H)
Bit 7 6 5 4 3 2 1 0

Name INTPND8 INTPND7 INTPND6 INTPND5 INTPND4 INTPND3 INTPND2 INTPND1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 INTPND8~INTPND1: Interrupt Pending Bits of Message Object 8 ~ Message Object 1
0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with higher priority.

•	INTPND1H Register (ADDRESS: 0xA1H)
Bit 7 6 5 4 3 2 1 0

Name INTPND16 INTPND15 INTPND14 INTPND13 INTPND12 INTPND11 INTPND10 INTPND9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 INTPND16~INTPND9: Interrupt Pending Bits of Message Object 16 ~ Message
Object 9

0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with higher priority.

•	INTPND2L Register (ADDRESS: 0xA2H)
Bit 7 6 5 4 3 2 1 0

Name INTPND24 INTPND23 INTPND22 INTPND21 INTPND20 INTPND19 INTPND18 INTPND17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 INTPND24~INTPND17: Interrupt Pending Bits of Message Object 24 ~ Message
Object 17

0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with higher priority.

•	INTPND2H Register (ADDRESS: 0xA3H)
Bit 7 6 5 4 3 2 1 0

Name INTPND32 INTPND31 INTPND30 INTPND29 INTPND28 INTPND27 INTPND26 INTPND25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 INTPND32~INTPND25: Interrupt Pending Bits of Message Object 32 ~ Message
Object 25.

0: This message object is not the source of an interrupt.
1: This message object is the source of an interrupt.

If the message object whose interrupt pending bit is set high is the source of an
interrupt, the Interrupt Identifier in the Interrupt Register will point to this message
object if there is no other interrupt source with higher priority.

Rev. 1.30 54 March 31, 2023 Rev. 1.30 55 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Message Valid Registers
These registers hold the MSGVA bits of the 32 Message Objects. By reading out the MSGVA bits,
the CPU can check which Message Object is valid. The MSGVA bit of a specific Message Object
can be set/reset by the CPU via the IFn Message Interface Registers.

•	MSGVAL1L Register (ADDRESS: 0xB0H)
Bit 7 6 5 4 3 2 1 0

Name MSGVA8 MSGVA7 MSGVA6 MSGVA5 MSGVA4 MSGVA3 MSGVA2 MSGVA1
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 MSGVA8~MSGVA1: Message Valid Bits of Message Object 8 ~ Message Object 1
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the Message

Handler.

•	MSGVAL1H Register(ADDRESS: 0xB1H)
Bit 7 6 5 4 3 2 1 0

Name MSGVA16 MSGVA15 MSGVA14 MSGVA13 MSGVA12 MSGVA11 MSGVA10 MSGVA9
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 MSGVA16~MSGVA9: Message Valid Bits of Message Object 16 ~ Message Object 9
0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the Message Handler.

•	MSGVAL2L Register (ADDRESS: 0xB2H)
Bit 7 6 5 4 3 2 1 0

Name MSGVA24 MSGVA23 MSGVA22 MSGVA21 MSGVA20 MSGVA19 MSGVA18 MSGVA17
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 MSGVA24~MSGVA17: Message Valid Bits of Message Object 24 ~ Message Object
17.

0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the Message

Handler.

•	MSGVAL2H Register (ADDRESS: 0xB3H)
Bit 7 6 5 4 3 2 1 0

Name MSGVA32 MSGVA31 MSGVA30 MSGVA29 MSGVA28 MSGVA27 MSGVA26 MSGVA25
R/W R R R R R R R R
POR 0 0 0 0 0 0 0 0

Bit 7~0	 MSGVA32~MSGVA25: Message Valid Bits of Message Object 32 ~ Message Object
25

0: This Message Object is ignored by the Message Handler.
1: This Message Object is configured and should be considered by the Message

Handler.
Note: The CPU must reset the MSGVA bit of all unused Messages Objects during the initialization
before it resets bit INIT in the CAN Control Register. This bit must also be reset before the identifier
IDn[28:00], the control bits XTDn, DIRn, or the Data Length Code DLCn[3:0] are modified, or if
the Messages Object is no longer required.

Rev. 1.30 54 March 31, 2023 Rev. 1.30 55 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Core Release Registers
The design step of a HT45B3305H CAN implementation can be identified by reading the Core
Release Registers Low/High.

Release Step SubStep Year Month Day Name
2 1 0 5 02 27 Revision 2.1.0, Date 2015/02/27

Example for Coding of Revisions

•	CRLL Register
Bit 7 6 5 4 3 2 1 0

Name DAY7 DAY6 DAY5 DAY4 DAY3 DAY2 DAY1 DAY0
R/W R R R R R R R R
POR 0 0 1 0 0 1 1 1

Bit 7~0	 DAY7~DAY0: Time Stamp Day
Two digits, BCD-coded. Configured by constant on HT45B3305H CAN synthesis.

•	CRLH Register
Bit 7 6 5 4 3 2 1 0

Name MON7 MON6 MON5 MON4 MON3 MON2 MON1 MON0
R/W R R R R R R R R
POR 0 0 0 0 0 0 1 0

Bit 7~0	 MON7~MON0: Time Stamp Month
Two digits, BCD-coded. Configured by constant on HT45B3305H CAN synthesis.

•	CRHL Register
Bit 7 6 5 4 3 2 1 0

Name SUBSTEP3 SUBSTEP2 SUBSTEP1 SUBSTEP0 YEAR3 YEAR2 YEAR1 YEAR0
R/W R R R R R R R R
POR 0 0 0 0 0 1 0 1

Bit 7~4	 SUBSTEP3~SUBSTEP0: Sub-step of Core Release
One digit, BCD-coded.

Bit 3~0	 YEAR3~YEAR0: Time Stamp Year (2010 + digit)
One digit, BCD-coded. Configured by constant on HT45B3305H CAN synthesis.

•	CRHH Register
Bit 7 6 5 4 3 2 1 0

Name REL3 REL2 REL1 REL0 STEP3 STEP2 STEP1 STEP0
R/W R R R R R R R R
POR 0 0 1 0 0 0 0 1

Bit7~4	 REL3~REL0: Core Release
One digit, BCD-coded.

Bit 3~0	 STEP3~STEP0: Step of Core Release
One digit, BCD-coded.

Rev. 1.30 56 March 31, 2023 Rev. 1.30 57 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Application Circuits

MCU HT45B3305H
CANMINT

RM1INT

SPI/I2C

Counter
16-bits

SOF

RMXINT

CLKOUT(Option)

Transceiver

CANTX

CANRX

RES

16MHz
VDD VDD

VDD

5V

120Ω 120Ω

CANH CANL

Node A Node N

VSS

.........

Node

Termination
Resistor

4

SPI Serial Interface

10K

16MHz

100pF 100pF 100pF

+5V

100pF

TXD

VDD

CANH
Rs

Vref
CANL

VSS

RXD

PCA82C250

VDD

INTB

SCK/SCL
CSB

MOSI/SDA
MISO

GPIO

VSS

MCU

500K

+5V

+5V

+5V

+5V

0R

120120
SSIF=L,SPI I/F

CAN Controller

CAN Transceiver

CAN BUS LINE

VDD

MISO/IA0

SCK/SCL

CLKOUT/SSIF

RM1INT

OSC2

OSC1

CANMINT

RES
SOF

VSS

MOSI/SDA

RMXINT

CS/IA1

CANRX
CANTX

HT45B3305H

Rev. 1.30 56 March 31, 2023 Rev. 1.30 57 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

I2C Serial Interface

I2C_A0

I2C_A1

510K

510K

10K

16MHz

100pF 100pF 100pF

+5V

100pF

TXD

VDD

CANH
Rs

Vref
CANL

VSS

RXD

PCA82C250

VDD

INTB

SCK/SCL
CSB

MOSI/SDA
MISO

GPIO

VSS

MCU

500K

+5V

+5V

+5V

+5V

0R

120120

I2C_A0

I2C_A1

SSIF=H,I2C I/F CAN BUS LINE

CAN Transceiver

CAN Controller

VDD

MISO/IA0

SCK/SCL

CLKOUT/SSIF

RM1INT

OSC2

OSC1

CANMINT

RES
SOF

VSS

MOSI/SDA

RMXINT

CS/IA1

CANRX
CANTX

HT45B3305H

Rev. 1.30 58 March 31, 2023 Rev. 1.30 59 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Package Information

Note that the package information provided here is for consultation purposes only. As this
information may be updated at regular intervals users are reminded to consult the Holtek website for
the latest version of the Package Information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant
section to be transferred to the relevant website page.

•	 Package Information (include Outline Dimensions, Product Tape and Reel Specifications)

•	 The Operation Instruction of Packing Materials

•	 Carton information

https://www.holtek.com/en/
https://www.holtek.com/en/package_carton_information

Rev. 1.30 58 March 31, 2023 Rev. 1.30 59 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

16-pin NSOP (150mil) Outline Dimensions

� �

�

�

�

�

� �

�

�

� �

�
�

� �

Symbol
Dimensions in inch

Min. Nom. Max.
A — 0.236 BSC —
B — 0.154 BSC —
C 0.012 — 0.020
C' — 0.390 BSC —
D — — 0.069
E — 0.050 BSC —
F 0.004 — 0.010
G 0.016 — 0.050
H 0.004 — 0.010
α 0° ― 8°

Symbol
Dimensions in mm

Min. Nom. Max.
A — 6.000 BSC —
B — 3.900 BSC —
C 0.31 — 0.51
C' — 9.900 BSC —
D — — 1.75
E — 1.270 BSC —
F 0.10 — 0.25
G 0.40 — 1.27
H 0.10 — 0.25
α 0° ― 8°

Rev. 1.30 60 March 31, 2023 Rev. 1.30 61 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

SAW Type 16-pin QFN (3mm×3mm for FP0.25mm) Outline Dimensions

E

A1

D2

E2

L K

8 5

4

1

1613

12

9

e
b

A3

A

D

Symbol
Dimensions in inch

Min. Nom. Max.
A 0.028 0.030 0.031

A1 0.000 0.001 0.002
A3 — 0.008 REF —
b 0.007 0.010 0.012
D — 0.118 BSC —
E — 0.118 BSC —
e — 0.020 BSC —

D2 0.063 — 0.069
E2 0.063 — 0.069
L 0.008 0.010 0.012
K 0.008 — —

Symbol
Dimensions in mm

Min. Nom. Max.
A 0.70 0.75 0.80

A1 0.00 0.02 0.05
A3 — 0.203 REF —
b 0.18 0.25 0.30
D — 3.00 BSC —
E — 3.00 BSC —
e — 0.50 BSC —

D2 1.60 — 1.75
E2 1.60 — 1.75
L 0.20 0.25 0.30
K 0.20 — —

Rev. 1.30 60 March 31, 2023 Rev. 1.30 61 March 31, 2023

HT45B3305H
CAN Bus Controller

HT45B3305H
CAN Bus Controller

Copyright© 2023 by HOLTEK SEMICONDUCTOR INC. All Rights Reserved.

The information provided in this document has been produced with reasonable
care and attention before publication, however, HOLTEK does not guarantee
that the information is completely accurate. The information contained in this
publication is provided for reference only and may be superseded by updates.
HOLTEK disclaims any expressed, implied or statutory warranties, including but
not limited to suitability for commercialization, satisfactory quality, specifications,
characteristics, functions, fitness for a particular purpose, and non-infringement of
any third-party’s rights. HOLTEK disclaims all liability arising from the information
and its application. In addition, HOLTEK does not recommend the use of
HOLTEK’s products where there is a risk of personal hazard due to malfunction
or other reasons. HOLTEK hereby declares that it does not authorise the use of
these products in life-saving, life-sustaining or safety critical components. Any use
of HOLTEK’s products in life-saving/sustaining or safety applications is entirely
at the buyer’s risk, and the buyer agrees to defend, indemnify and hold HOLTEK
harmless from any damages, claims, suits, or expenses resulting from such use.
The information provided in this document, including but not limited to the content,
data, examples, materials, graphs, and trademarks, is the intellectual property
of HOLTEK (and its licensors, where applicable) and is protected by copyright
law and other intellectual property laws. No license, express or implied, to any
intellectual property right, is granted by HOLTEK herein. HOLTEK reserves the
right to revise the information described in the document at any time without prior
notice. For the latest information, please contact us.

	Features
	Applications
	General Description
	Block Diagram
	Pin Assignment
	Pin Description
	Absolute Maximum Ratings
	D.C. Characteristics
	Operating Voltage Characteristics
	Operating Current Characteristics
	Standby Current Characteristics

	A.C. Characteristics
	System Frequency Characteristics
	Timing Characteristics

	CAN Electrical Characteristics
	Power-on Reset Characteristics
	Power Control Function
	External Crystal Oscillator – HXT
	CLKOUT Pin
	IDLE Mode
	SLEEP Mode and Wake-up

	Functional Description
	Write Buffer and Data Check
	SPI and IC Frame Fields
	SPI Serial Interface
	IC Serial Interface
	HT45B3305H CAN Block Diagram
	Interrupt Output Pins
	Message RAM and FIFO Buffer Configuration
	HT45B3305H CAN Operating Modes
	CAN Application

	Register Description
	Register Map
	Register Reset Condition
	Register Description

	Application Circuits
	SPI Serial Interface
	I2C Serial Interface

	Package Information
	16-pin NSOP (150mil) Outline Dimensions
	SAW Type 16-pin QFN (3mm×3mm for FP0.25mm) Outline Dimensions

