
 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 1 / 35 March 17, 2022

BC45B4523 NFC Reader Development Board
Application Note

D/N: AN0573EN

Introduction

The BC45B4523 is an NFC reader controller supporting a transmission frequency of 13.56MHz. It is

compatible with the ISO14443A, ISO14443B, ISO15693 protocols and supports the Crypto_M

encryption and decryption functions. The ISO14443A/B protocols provide four bit rate options, which

are 106Kbps, 212Kbps, 424Kbps and 848Kbps. Multiple protocols are able to work with multiple

types of NFC tags, making the device an excellent solution for short distance secure transmission.

The BC45B4523 provides a maximum RF output current of 250mA, allowing for an increased

sensing distance and also supports a low power automatic card detection mode. The integrated 3.3V

LDO, which has a maximum output current of 150mA, can provide power for the master MCU.

This text will show how to use the BC45B4523 along with the BC45B4523 NFC reader

development board. Together with the provided program library, this will assist users to get started

quickly in using this device.

Functional Description

This application example includes PC software which is connected to the development board by means

of a USB virtual COM. Command procedures, UID read and data access to various NFC tags can be

implemented using this software. The software also includes an advanced mode, where users are able

to complete the required command procedures for some special NFC tags by sending commands.

A jumper is located on the development board to select the power source for the master MCU and

NFC reader transmitter, allowing users to set up different environments.

Features

 NFC Reader Development Board

 Connects with the PC using a USB virtual COM port

 UART transmission baud rate = 115200bps

 Supports BC45B4523 3.3V and 5V (VUSB) voltage selection

 MCU HT32F52241 powered by the BC45B4523’s integrated 3.3V LDO or an external

3.3V LDO

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 2 / 35 March 17, 2022

 Provides a buzzer to give an indication sound after finishing tag read/write commands

 Supports ISO14443A, ISO14443B, ISO15693 and Crypto-M cards

 Supports hardware card detection function

 Application sample cards

ISO14443A Type 2: NXP NTAG213 A card, tag IC: NTAG213

ISO14443B Type 3: ST SRT512 B card, tag IC: ST25TB512

ISO15693 Type 5: NXP SL2D2 V card, tag IC: SL2S2002_SL2S2102

Mifare Classes 1K card: tag IC MF1ICS50

Mifare Classes 4K card: tag IC MF1S70YYX

 NFC Reader Library

 Supports ISO14443-1, ISO14443-2, ISO14443-3 protocols

 Supports ISO14443A card UID read and Type 2 tag read/write

 Supports ISO14443B card UID read

 Supports Crypto-M card UID read and card read/write

 Supports ISO15693 card UID read and card read/write

 Professional mode can be used to support customised commands

Hardware Description

Circuit Diagram

Figure 1

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 3 / 35 March 17, 2022

Figure 2

Circuit Block Diagram

The hardware block diagram is shown in Figure 3. This application example uses a USB interface

to connect to the PC. A USB-to-UART bridge IC is used to bridge the master MCU HT32F52241

and USB interface. The HT32F52241 uses an SPI interface to control the BC45B4523 NFC reader.

The BC45B4523 circuit includes an RF matching circuit and an NFC antenna.

In addition, the PCB board includes an HT7833 LDO. Users can select either the BC45B4523’s

internal 3.3V LDO or the HT7833 as the power source for the HT32F52241.

Figure 3. Hardware Block Diagram

Circuit Description

This section will focus on the BC45B4523 circuit description. Refer to the relevant datasheet for

the HT32F52241 and HT42B534-2 application circuits.

 Control Interface and Integrated LDO

As shown in Figure 4, the BC45B4523 uses its SPI interface as the control interface and has an

IRQ pin for its interrupt output. It also has an integrated 3.3V LDO with a maximum current

output of 150mA, which can be provided for use by external circuits such as the master MCU.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 4 / 35 March 17, 2022

Figure 4. SPI Control Interface

 TX Matching Circuit

The BC45B4523 NFC TX matching circuit is shown below where TX1 and TX2 are the RF

differential output pins providing an output frequency of 13.56MHz. Other matching circuit

components are described in the following table.

Figure 5. TX Matching Circuit

Components Main Purpose
L1, L2, C14, C15, C16, C17, C41 EMC filtering
C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C37 Impedance matching
R3, R4 Antenna Q adjustment

Table 1. Component Main Purposes

Figure 6 shows the TX matching circuit measurement method. Connect the SMA connector to

the TX1/TX2 terminal, then observe the Smith Chart using a network analyser and adjust the

characteristic impedance. The recommended value is 25Ω±10%.

The characteristic impedance of this example is 23.4+j0.1Ω, as shown in the Smith Chart in

Figure 7.

Figure 6. TX Matching Circuit Measurement

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 5 / 35 March 17, 2022

Figure 7. Smith Chart

 Antenna Q Value Adjustment

The antenna’s Q value is related to bandwidth. The antenna impedance characteristic

measurement is shown in Figure 8. Connect the SMA connector to both terminals of the antenna,

measure the resistance (R) and inductance (L) characteristics of the antenna using a network

analyser, and adjust the Q value through R3/R4 in the circuit. The recommended Q value for

the ISO14443 standard is in a range of 10~30.

Figure 9 shows the antenna characteristics of this example, which is about 588mΩ and 568nH.

Q(ant+R3+R4) = ω × Lant / R(ant+R3+R4)

= 2 × π × fc × Lant / R(ant+R3+R4)

= 2 × π × 13.56M × 568n / 2.6

≒ 18.6

BW = fc / Q(ant+R3+R4)

= 725K

Figure 8. Antenna Impedance Characteristic Measurement

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 6 / 35 March 17, 2022

Figure 9. Antenna Characteristics

 RX Receiver Circuit

As shown in the BC45B4523 NFC RX matching circuit below, VMID is a 1.65V DC reference

voltage, C12 is a filter capacitor for VMID and RX is an RF input signal receiving pin. Either

C13, which is close to the antenna terminal, or C28 which is close to the transmitting terminal,

together with R1 and R2 can implement a carrier frequency divider, which is used to send the

received signal to the RX pin.

After the RxAutoPD buffer is disabled, the RX input signal should be in a range of 2.5~2.9Vp-p.

The calculation formula is as follows:

VRX = (VTX × R2) / (R1 + R2)

Here VTX indicates the voltage of C13 or C28 at the TX matching circuit terminal.

Figure 10. RX Matching Circuit

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 7 / 35 March 17, 2022

In this example, the VMID pin voltage is 1.60V and RX Vp-p is 2.76V, as shown in Figure 11.

Figure 11. RX Waveform

 RX Layout Considerations

The RX layout routing and components should not be located close to the crystal oscillator

(Y1). As shown in Figure 12 below, Y1 should be surrounded by ground surfaces to reduce

interference.

Figure 12. RX Layout

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 8 / 35 March 17, 2022

PCB Appearance and Hardware Functional Description

Figure 13

 Operating Description

(1) Connect to the PC USB port via a Micro USB connector.

(2) Use the SWDP interface to edit and program the firmware.

(3) Place the tag above the antenna for tag sensing.

(4) No metal objects should be located nearby during the tag sensing and card detection

calibration.

 Jumper Description

(1) J1 and J2 should remain shorted.

(2) J3 is used to select the power source for the BC45B4523 TVDD (RF transmitter power):

3.3V–provided by LDO (HT7833); 5V–provided by VUSB.

(3) J4 is used to select the power source for the 3.3V VDD (MCU VDD / bridge IC VDD):

LDO (HT7833) 3.3V output or the BC45B4523’s integrated 3.3V LDO output.

 BC45B4523 Card Detection Current Description

(1) Use J3 to select the power source for the BC45B4523 TVDD (RF transmitter power):

HT7833.

(2) Use J4 to select the power source for the VDD (MCU VDD / bridge IC VDD): HT7833

3.3V output.

(3) Current Measurement

a) Short connect the BC45B4523’s VDD (VDDIO) and VIN, then connect to the HT7833

output. Other signals are connected normally as shown in Figure 14.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 9 / 35 March 17, 2022

Figure 14

b) Card detection mode current measurement: select the tag detection mode on the

software’s Advanced page–Sleep & 500ms.

c) Use an oscilloscope to examine the antenna transmitter waveform (Figure 15). The RF

transmits a signal once every 500ms for about 12.5µs (Figure 15-(B)).

d) For the stage shown in Figure 15-(A), it is not possible to use the oscilloscope current

mode to make measurements due to its small magnitude, measured only in

microamperes. A ammeter is used instead to obtain the current value, about 5µA.

e) For the stage shown in Figure 15-(B), it is possible to use the oscilloscope current

mode to make measurements. As shown in Figure 16, there are two intervals of 12.5µs

every 1s with an average current of about 54mA for each interval. Averaging the

current in these two intervals for 1s gives about 1.35µA.

f) Adding the step (d) and (e) values gives about 6.35µA.

Figure 15

Figure 16

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 10 / 35 March 17, 2022

Software and Program Description

This application example provides the relevant PC software which controls the BC45B4523 NFC

reader to implement read and write card operations. The HT32 firmware and library are also

provided to assist with rapid user development.

Software Description

Download the HT32 series library from the Holtek official website: HT32F5xxxx (M0+) Standard

Peripheral Firmware Library.

After decompression, create an NFC directory in the Application directory. Decompress the

example project and place it in this directory. The project is developed using the Keil uVision 5.

Architecture Description
The program application block diagram is as follows.

The BC45B4523 NFC reader demo board is composed of a master MCU – HT32F52241, a UART

bridge IC – HT42B534-2, and an NFC reader – BC45B4523. After receiving UART commands

from the PC, the HT32F52241 controls the BC45B4523 using its SPI interface to transmit

ISO14443 and IO15693 protocol radio frequencies. By using this UART solution, users do not need

to develop interface software but only need to use general serial port software or a built-in terminal

within Windows to send commands to the NFC reader.

The structure of the function library is as follows.

 User Functions

(1) IO/SPI/UART/PWM settings

(2) UART/Reader command processing

(3) UID scanning process

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 11 / 35 March 17, 2022

 Protocol Layer

(1) Crypto_M encryption and decryption process

(2) ISO14443A RF settings and related commands

(3) ISO14443B RF settings and related commands

(4) ISO15693 RF settings and related commands

 Command Library Layer

(1) BC45B4523 register read/write

(2) BC45B4523 FIFO read/write

(3) BC45B4523 protocol related functional settings

 Standard Peripheral Driver

(1) SPI transmitting/receiving functions

(2) UART transmitting/receiving functions

(3) System clock settings

Software Instructions

After the program starts, it will automatically open the first COM port found. If it is not the correct

one, reselect another COM port.

UID Scan

Read/Write

Port
Selection

Advanced
Command

Area

Output
Area

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 12 / 35 March 17, 2022

 ISO14443A (NFC-A)

(1) UID scan is used to obtain the tag UIDs.

(2) The flowchart on the right shows the decomposition process to help users understand the

UID scan actions.

a) Click [RF Rst] to reset RF  click [REQA] then the output area will display the ATQA

returned by tag  click [AntiCol 1] then the output area will display the UID Level 1

code returned by tag  click [Sel 1]  click [AntiCol 2] then the output area will

display the UID Level 2 code returned by tag  click [Sel 2]. For a 7-byte UID, steps

Sel 1 and 2 are sufficient.

b) For a 10-byte UID, one more [AntiCol 3] step is required to obtain the UID Level 3 code.

(3) After execution to the ACTIVE state, the reader can enter the HALT state by clicking [Halt]

and then enter the READY state by clicking [WUPA].

(4) The read/write function presently only supports Type 2 tags with simple protocols.

(5) For other tags with more operation procedures or customised commands, users can use the

Data Exchange area to fill in commands and data to implement the required access functions.

(6) All the execution results will be displayed in the output area.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 13 / 35 March 17, 2022

 ISO14443B (NFC-B)

(1) The screen function is the same as ISO14443A.

(2) Read and write operations of Type B cards are not yet supported. Users should execute

commands via the Data Exchange function to implement these operations.

(3) The ST25TB512 is a non-standard Type4 B card in which the UID read and read/write

operations are as follows. For detailed commands and procedures, refer to the ST25TB512

datasheet.

a) UID Read Example

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 14 / 35 March 17, 2022

b) User Area Read/Write Example

Initiate Command()

Random Number

Select Command(0E)+Random Number(A6)

Read Area Command(08)+Address(07)

Data result

Write Area Command(09)+Address(07)+Data(4bytes)

No return data so Error report but it is write correctly

Read Area Command(08)+Address(07)

Data result

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 15 / 35 March 17, 2022

 ISO15693(NFC-V)

(1) UID(Inventory) scan function: Time Slots=1 and Time Slots=16 two settings.

When Time Slots=1, only one tag can be scanned at the same time.

When Time Slots=16, up to 16 tags can be scanned at the same time.

Click [Inventory], now the UIDs will be obtained according to the Time Slots setting and

displayed in the Inventory pull-down menu.

(2) Click [Read]/[Write] button to access the selected inventory tag.

(3) For other tags with customised commands, users should issue relevant commands via the

Data Exchange function.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 16 / 35 March 17, 2022

 Crypto_M

(1) The Crypto_M function provided by Holtek is compatible with Mifare tags.

(2) When implementing read/write operations to Crypto_M tags, Key-A or Key-B must be

provided.

(3) Different blocks can be set with different permissions, refer to the Mifare tag specification

for the permission setting details.

※ The dotted frame area is for engineering testing, it must not be selected or modified.

 Advanced

(1) Card Detection Mode

Holtek’s NFC reader demo board provides three power modes: Deep Sleep1, Sleep and

Normal, which refer to the status that the master MCU maintains when a tag has not yet

been detected. The task of regularly detecting tags is distributed to the BC45B4523, greatly

reducing the power consumption. The BC45B4523 will wake up the master MCU only

after a tag is detected.

a) Before enabling the card detection function of the BC45B4523, click [CD Calibration]

to implement RF calibration without placing any tag above the reader.

b) Configure the master MCU’s power mode and the BC45B4523’s wake-up time.

c) After setting the tag type to be detected, click the [Scan] button to enter the tag scan

mode.

d) To change the card detection wake-up time, stop the ongoing operation first and then

select the time required.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 17 / 35 March 17, 2022

(2) BC45B4523 Register Access Function

This is an advanced function which is used to read and write the internal registers of the

BC45B4523. Refer to the BC45B4523 datasheet for the functional description of the registers.

[Read] Read the value of a single register

[Read All] Read all the registers

[Write] Write into a single register

[Default] Write default values into all the registers

UART Command Description

The software provided by Holtek communicates with the NFC reader via UART commands, which

are described below.

Command Parameter Description
reg -rd [-s0/-s1] <addr>

-rd -all
-wr [-s0/-s1] <addr> <data>
-wr -default

Read addr (address) in sector 0/1
Read all addresses
Write data into addr in sector 0/1
Write default values into all addresses

rf -off
-reset

Turn off field
Restart field

cd -cal
-lpmcu <deep sleep1/sleep/normal>
-wkuptime <100/200/500/1000>

RF calibration
Set master MCU’s power mode
Set BC45B4523 card detection interval

Scan -start <n> 1. Start card detection according to card type
2. n=0x01: NFC-A
 n=0x02: NFC-B
 n=0x04: NFC-V
 n=0x03: NFC-A and NFC-B
 … and so on
3. Enter any byte via UART to end detection

a -setup
-reqa
-wupa
-halt
-anticol <1/2/3>
-sel <1/2/3> <id>
-getuid
-trans <-crc/-nocrc> <data>

Set to ISO14443A information interface
Execute ISO14443A reqa command
Execute ISO14443A wupa command
Execute ISO14443A halt command
Execute ISO14443A anti collision command
Execute ISO14443A select command
Read UID
Send data with (without) checksum

b -setup
-reqb
-wupb
-halt
-attrib
-getuid
-trans <-crc/-nocrc> <data>

Set to ISO14443B information interface
Execute ISO14443B reqb command
Execute ISO14443B wupb command
Execute ISO14443B halt command
Execute ISO14443B attrib command
Read UID
Send data with (without) checksum

v -setup
-inv1
-inv16
-quiet <uid>
-rd <-rd> <addr> <uid>
-wr <-wr> <addr> <data> <uid>
-trans <-crc/-nocrc> <data>

Set to ISO15693 information interface
TimeSlots=1 to get inventory
TimeSlots=16 to get inventory
Issue quiet command to a specific tag
Read from the addr address of a tag
Write data to the addr address of a tag
Send data with (without) checksum

mifare -cread <ka/kb> <key> <block>
-cwrite <ka/kb> <key> <block> <data>

Read from block with ka=key or kb=key
Write data to block with ka=key or kb=key

t2t -rd <addr>
-wr <addr> <data>

Read from the addr address of a Type 2 tag
Write data to the addr address of a Type 2 tag

Note: Add \r (return) to the last byte of the command, which means the end of a command.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 18 / 35 March 17, 2022

Holtek NFC Reader Library Instructions

Directory Structure

Interrupt Handler

BC45B4523 Functions

Demo Board I/O Configuration

Buzzer PWM Setup

UART Command Analysis and Command
Execution

SPI & UART Transmission Functions

1. Time & Delay Functions
2. BC45B4523 Read/Write &
 Basic Functions

Standard Protocol Basic Commands

Demo Board Control Functions

DES Algorithm Used by Crypto_M

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 19 / 35 March 17, 2022

Main Program Flowchart

Main

I/O Init
UART/SPI Init

GPTM0 Init (Buzzer)
System Tick Init

BC45_Configuration
(IO14443A)

Set Card Detect Threshold
Level Phase Q & I

Set Wakeup Timer = 500ms

Get Charater from UART

Get‘/r’?

Scan UID Loop?

Process Command

N

Y

Scan UID LowPwr

N

Y

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 20 / 35 March 17, 2022

Card Detection Flowchart

Start Calibration

1. Write [BC45 ADC Calibration] Command
2. Set extreme threshold to trigger CD IRQ

1. Set Wakeup Timer = 250ms
2. Setup IRQ as CD_IRQ
3. Start Wakeup Timer

Enter Card Detect Mode

Sleep or Wait IRQ

Wake or IRQ=1 ?

Read I&Q Value and add up

6th time?

Average I&Q Value
(adc I avg and adc Q avg)

Exit Card Detect Mode

Set Threshold I & Threshold Q
with adc X avg ± step

N

Y

N

Y

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 21 / 35 March 17, 2022

Card Detection

1.Setup IRQ & CD_IRQ
2.Start Wakeup Timer

Enter Card Detect Mode

Sleep or Wait IRQ

Wake or IRQ=1 ?

Exit Card Detect Mode

Y

N

Y

N

Y

N

N

Y

BC45_Configuration
(CONFIG 14443A)

Scan UID_ISO14443A
Succeed ?

Scan UID_ISO14443B
Succeed ?

BC45_Configuration
(CONFIG 14443B)

Scan UID_ISO15693
Succeed ?

BC45_Configuration
(CONFIG 15693)

Exit

Library Functions

Category List

 API Functional Description

ISO14443A
Category

ISO14443A_Command ISO14443A interface command
ISO14443A_Config ISO14443A initialisation setup
ISO14443A_Get_Speed_Reader Get reader speed configuration
ISO14443A_Request Execute ISO14443A Request command
ISO14443A_WakeUp Execute ISO14443A Wakeup command
ISO14443A_Anticoll Execute ISO14443A Anti Collision command
ISO14443A_Select Execute ISO14443A Select command

ISO14443A_RATS Execute ISO14443A RATS (Request for Answer To
Select) command

ISO14443A_PPS Execute ISO14443A PPS (Protocol and Parameter
Selection) command

ISO14443A_Halt Execute ISO14443A Halt command

Crypto_M

ISO14443A_Load_Key Load key
ISO14443A_Authentication Execute Crypto_M authentication
ISO14443A_Write_Mifare_Block Execute Crypto_M Write Block command
ISO14443A_Read_Mifare_Block Execute Crypto_M Read Block command
ISO14443A_Decrement Execute Crypto_M Decrement command
ISO14443A_Increment Execute Crypto_M Increment command
ISO14443A_Restore Execute Crypto_M Restore command
ISO14443A_Transfer Execute Crypto_M Transfer command

ISO14443B
Category

ISO14443B_Command ISO14443B interface command
ISO14443B_Config ISO14443B initialisation setup
ISO14443B_Get_Speed_Reader Get reader speed configuration
ISO14443B_Request Execute ISO14443B Request command
ISO14443B_WakeUp Execute ISO14443B Wakeup command
ISO14443B_ATTRIB Execute ISO14443B Attribute command
ISO14443B_Halt Execute ISO14443B Halt command

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 22 / 35 March 17, 2022

 API Functional Description

ISO15693
Category

ISO15693_Command ISO15693 interface command
ISO15693_Config ISO15693 initialisation setup
ISO15693_Get_Speed_Reader Get reader speed configuration
ISO15693_Inv_Req_1_Slot Execute ISO15693 Inventory (1 Slot) command
ISO15693_Inv_Req_16_Slots Execute ISO15693 Inventory (16 Slots) command
ISO15693_Stay_Quiet Execute ISO15693 Stay Quiet command
ISO15693_Select Execute ISO15693 Select command
ISO15693_Reset_to_Ready Execute ISO15693 Reset to Ready command
ISO15693_Read_Single_Block Execute ISO15693 Read Single Block command
ISO15693_Write_Single_Block Execute ISO15693 Write Single Block command
ISO15693_Lock_Block Execute ISO15693 Lock Block command
ISO15693_Read_Multiple_Blocksgfs Execute ISO15693 Read Multiple Blocks command
ISO15693_Write_Multiple_Blocks Execute ISO15693 Write Multiple Blocks command
ISO15693_Write_AFI Execute ISO15693 Write AFI command
ISO15693_Lock_AFI Execute ISO15693 Lock AFI command
ISO15693_Write_DSFID Execute ISO15693 Write DSFID command
ISO15693_Lock_DSFID Execute ISO15693 Lock DSFID command
ISO15693_Get_System_Information Execute ISO15693 Get System Information command
ISO15693_Get_Multiple_Block_Security_Status Read the security status of multiple blocks of VICC

BC45B4523
Chip Function

Transparent_With_CRC Transmit/receive data with CRC
Transparent_Without_CRC Transmit/receive data without CRC

Demo Board
Client Function

ScanUID_ISO14443ATagType Scan the UID of ISO14443A tag type
ScanUID_ISO14443BTagType Scan the UID of ISO14443B tag type
ScanUID_ISO15693TagType Scan the UID of ISO15693 tag type

ISO14443A Category

Name uint8_t ISO14443A_Command (uint8_t Command, uint8_t *Param, uint16_t LenParam,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Follows the ISO14443A and Crypto_M interface commands to support all the functions below. For
functional definitions, refer to the ISO14443A_Category.h file.

Input
Command Command related to ISO14443A/MIFARE
*Param Parameter related to the command
LenParam Length of the input parameter

Output
*Data_Resp Response to the operation command
*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Config (uint8_t Speed)
Function Configures buffer and RF communication speed for ISO14443A operations
Input Speed High nibble: TX speed; Low nibble: RX speed
Output None
Return Return the success status

Name uint8_t ISO14443A_Get_Speed_Reader (uint8_t *Speed, uint16_t *LenSpeed)

Function Returns the current RF speed configuration
Input None

Output
*Speed High nibble: TX speed; Low nibble: RX speed
*LenSpeed Length of the command output

Return Return the success status

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 23 / 35 March 17, 2022

Name uint8_t ISO14443A_Request (uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Request command according to the ISO14443A standard
Command 26H
Input None

Output
*Data_Resp

If the command succeeds, reply with the corresponding command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_WakeUp (uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes WakeUp command according to the ISO14443A standard
Command 52H
Input None

Output
*Data_Resp

If the command succeeds, reply with the WakeUp command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Anticoll (uint8_t Level, uint8_t CollMask_Value, uint8_t *NumColl,
uint8_t *Coll_Pos, uint8_t *UID, uint16_t *LenUID)

Function Executes Anti Collision command according to the ISO14443A standard, only one card can be selected
in the field

Command 93H;95H;97H

Input
Level Selects Cascade Level
CollMask_Value Collision bit setup, refer to the ISO14443A_Anticoll function for detailed

functional definition

Output

*NumColl Number of collisions
*Coll_Pos Bit position when collision occurs
*UID Selects a card (UID) to operate on
*LenUID Length of the UID received in anti-collision

Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Select (uint8_t Level, uint8_t *UID, uint8_t *Data_Resp,
uint16_t *LenData_Resp)

Function Executes Select command according to the ISO14443A standard
Command 93H;95H;97H

Input
Level Selects Cascade Level (1~3)
*UID Selects a card (UID) to operate on

Output
*Data_Resp

If the command succeeds, reply with the command data of the card;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_RATS (uint8_t Parameter_Byte, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes RATS command of the ISO14443A-4 standard
Command E0H

Input Parameter_Byte High nibble: FSDI (maximum packet length that can be received by PCD);
Low nibble: CID (logical number of the addressed card)

Output
*Data_Resp

If the command succeeds, reply with the RATS command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 24 / 35 March 17, 2022

Name uint8_t ISO14443A_PPS (uint8_t CID, uint8_t PPS0, uint8_t PPS1, uint8_t *Data_Resp,
uint16_t *LenData_Resp)

Function Executes PPS command of the ISO14443A-4 standard
Command D0H

Input

CID Logical number of the addressed card
PPS0 Defines whether to transmit PPS1

PPS1
“0000”+DRI(2-bit) + DSI(2-bit)
DSI: Divisor integer selected from card to reader
DRI: Divisor integer selected from reader to card

Output
*Data_Resp

If the command succeeds, reply with the PPS command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Halt (uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes a Halt command according to the ISO14443A standard
Command 50H
Input None

Output
*Data_Resp

If the command succeeds, there is no need to respond with data;
If the Halt fails, reply with a HALT message;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Crypto_M

Name uint8_t ISO14443A_Load_Key (uint8_t *Key)
Function Loads key into the BC45B4523 master key buffer
Input Key 6-byte key data
Output None
Return State after the function is processed

Name uint8_t ISO14443A_Authentication (uint8_t Select_Key, uint8_t Block_Num, uint8_t *UID,
uint8_t LenUID)

Function Executes Authentication command of Crypto_M
Command 60H;61H

Input

Select_Key Selects Key_A(0x00) or Key_B(0x01)
Block_Num Data block to be authenticated
*UID Selects a card (UID) to operate on
LenUID Length of the UID

Output None
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Write_Mifare_Block (uint8_t Block_Num, uint8_t *Data_Wr,
uint8_t *Data_Resp, uint16_t *LenData_Resp, uint8_t Check_Crypto)

Function Executes Write Block command of Crypto_M
Command A0H

Input
Block_Num Address to be written with a data block
*Data_Wr 16-byte data to be written

Output
*Data_Resp

If the command succeeds, no need to respond with data;
If the write operation fails, reply with a NACK message;
For other errors, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Check_Crypto Check whether the authentication has passed before execution

Return For the state after the function is processed, refer to the comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 25 / 35 March 17, 2022

Name uint8_t ISO14443A_Read_Mifare_Block (uint8_t Block_Num, uint8_t *Data_Resp,
uint16_t *LenData_Resp, uint8_t Check_Crypto)

Function Executes Read Block command of Crypto_M
Command 30H
Input Block_Num Address of the data block to be read

Output
*Data_Resp

If the command succeeds, reply with the data read out;
If the read operation fails, reply with a NACK message;
For other errors, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Check_Crypto Check whether the authentication has passed before execution

Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Decrement (uint8_t Block_Num, uint8_t *Decrement_Value,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function C0H
Command Executes Decrement command of Crypto_M

Input
Block_Num Data block to implement decrement
Decrement_Value 4-byte subtrahend

Output
*Data_Resp

If the command succeeds, no need to respond with data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Increment (uint8_t Block_Num, uint8_t *Increment_Value,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Increment command of Crypto_M
Command C1H

Input
Block_Num Data block to implement increment
Increment_Value 4-byte addend

Output
*Data_Resp

If the command succeeds, no need to respond with data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Restore (uint8_t Block_Num, uint8_t *Restore_Value, uint8_t *Data_Resp,

uint16_t *LenData_Resp)
Function Executes Restore command of Crypto_M
Command C2H

Input
Block_Num Reads out the value of the data block
Restore_Value No real value, any value can be entered

Output
*Data_Resp

If the command succeeds, no need to respond with data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443A_Transfer (uint8_t Block_Num, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Transfer command of Crypto_M
Command B0H

Input Block_Num Data block to be set with a new value

Output
*Data_Resp

If the command succeeds, no need to respond with data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 26 / 35 March 17, 2022

ISO14443B Category

Name uint8_t ISO14443B_Command (uint8_t Command, uint8_t *Param, uint16_t LenParam,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Follows the ISO14443B interface commands to support all the functions below. For functional
definitions, refer to the ISO14443B_Category.h file.

Intput
Command Command related to ISO14443B
*Param Parameter related to the command
LenParam Length of the input parameter

Output
*Data_Resp Response to the operation command
*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443B_Config (uint8_t Speed)
Function Configures buffer and RF communication speed for ISO14443B operations
Input Speed High nibble: TX speed; Low nibble: RX speed
Output None
Return Return the success status

Name uint8_t ISO14443B_Get_Speed_Reader (uint8_t *Speed, uint16_t *LenSpeed)

Function Returns the current RF speed configuration
Input None

Output
*Speed High nibble: TX speed; Low nibble: RX speed
*LenSpeed Length of the command output

Return Return the success status

Name uint8_t ISO14443B_Request (uint8_t AFI, uint8_t Num_Slots_N, uint8_t *Slot_Num,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Request command according to the ISO14443B standard

Input
AFI PICC application type locked by PCD
Num_Slots_N Number of slots, refer to the ISO14443B specification for details

Output

*Slot_Num The first slot number to find a card

*Data_Resp
If the command succeeds, reply with the corresponding command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443B_WakeUp (uint8_t AFI, uint8_t Num_Slots_N, uint8_t *Slot_Num,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes WakeUp command according to the ISO14443B standard

Input
AFI PICC application type locked by PCD
Num_Slots_N Number of slots, refer to the ISO14443B specification for details

Output

*Slot_Num The first slot number to find a card

*Data_Resp
If the command succeeds, reply with the WakeUp command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 27 / 35 March 17, 2022

Name uint8_t ISO14443B_ATTRIB (uint8_t *PUPI, uint8_t *Param, uint8_t *Higher_Layer,
uint16_t LenHigher_Layer, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Command 1DH
Function Executes ATTRIB command according to the ISO14443B standard

Input

PUPI Unique PICC identifier (4-byte)
Param 4-byte parameter which follows ISO14443B
Higher_Layer Higher level information which follows ISO14443B, refer to the ISO14443B

specification
LenHigher_Layer Length of the obtained higher level information

Output
*Data_Resp

If the command succeeds, reply with the ATTRIB command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO14443B_Halt (uint8_t *PUPI, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Halt command according to the ISO14443B standard
Command 50H
Input PUPI Unique PICC identifier (4-byte)

Output
*Data_Resp

If the command succeeds, reply with the Halt command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

ISO15693 Category

Name uint8_t ISO15693_Command (uint8_t Command, uint8_t *Param, uint16_t LenParam,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Follows the ISO15693 interface commands to support all the functions below. For functional
definitions, refer to the ISO15693_Category.h file.

Input
Command Command related to ISO15693
*Param Parameter related to the command
LenParam Length of the input parameter

Output
*Data_Resp Response to the operation command
*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Config (uint8_t Speed)
Function Configures buffer and RF communication speed for ISO15693 operations
Input Speed High nibble: TX speed; Low nibble: RX speed
Output None
Return Return the success status

Name uint8_t ISO15693_Get_Speed_Reader (uint8_t *Speed, uint16_t *LenSpeed)

Function Returns the current RF speed configuration
Input None

Output
*Speed High nibble: TX speed; Low nibble: RX speed
*LenSpeed Length of the command output

Return Return the success status

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 28 / 35 March 17, 2022

Name uint8_t ISO15693_Inv_Req_1_Slot (uint8_t Speed, uint8_t Inv_Mode, uint8_t AFI,
uint8_t Mask_Len, uint8_t *Mask_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Inventory (1 Slot) command according to the ISO15693 standard
Command 01H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + AFI
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file
for details

AFI VICC application type locked by VCD
Mask_Len Length of mask code indicating the effective number of bits
*Mask_Value Mask code placed in the byte array

Output
*Data_Resp

If the command succeeds, reply with the Inventory(01H) command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Inv_Req_16_Slots (uint8_t Speed, uint8_t Inv_Mode, uint8_t AFI,

uint8_t Mask_Len, uint8_t *Mask_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Inventory (16 Slots) command according to the ISO15693 standard
Command 01H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + AFI
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file
for details

AFI VICC application type locked by VCD
Mask_Len Length of mask code indicating the effective number of bits
*Mask_Value Mask code placed in the byte array

Output
*Data_Resp

If the command succeeds, reply with the Inventory(01H) command data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Stay_Quiet (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Stay Quiet command according to the ISO15693 standard
Command 02H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' +
Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)

Output
*Data_Resp

If the command succeeds, there is no need to respond with data;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Select (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Select command according to the ISO15693 standard
Command 25H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' +
Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)

Output
*Data_Resp

If the command succeeds, reply with the Select (25H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 29 / 35 March 17, 2022

Name uint8_t ISO15693_Reset_to_Ready (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t *Data_Resp, uint16_t *LenData_Resp) ;

Function Executes the Reset to Ready according to the ISO15693 standard, VICC will return to Ready state
Command 26H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' +
Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)

Output
*Data_Resp

If the command succeeds, reply with the Reset (26H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Read_Single_Block (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t Block_Num, uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Read Single Block command according to the ISO15693 standard
Command 20H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' +
Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)
Block_Num Serial number of the data block to be read

Output
*Data_Resp

If the command succeeds, reply with the Read Single Block (20H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Write_Single_Block (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t Block_Size, uint8_t *Write_Block_Param, uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Write Single Block command according to the ISO15693 standard
Command 21H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' +
Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)
Block_Size Size of data block (byte)(different brands may be different)

*Write_Block_Param 1st byte: serial number of the data block to be written
2nd…end: data to be written

Output
*Data_Resp

If the command succeeds, reply with the Write Single Block (21H) command
data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in the
program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 30 / 35 March 17, 2022

Name uint8_t ISO15693_Lock_Block (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t Block_Num, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Lock Block command according to the ISO15693 standard
Command 22H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' +
Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)
Block_Num Serial number of data block to be locked

Output
*Data_Resp

If the command succeeds, reply with the Lock Block (22H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Read_Multiple_Blocks (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t *Read_Multi_Block_Param, uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Read Multiple Blocks command according to the ISO15693 standard
Command 23H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) +
'0' + Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)

*Read_Multi_Block_Param 1st byte: serial number of the first data block to be read
2nd byte: number of data blocks to be read

Output
*Data_Resp

If the command succeeds, reply with the Read Multiple Blocks (23H)
command data;
If a Flag error occurs, respond with the error code of the ISO15693
standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in
the program

Name
uint8_t ISO15693_Write_Multiple_Blocks (uint8_t Speed, uint8_t Non_Inv_Mode,

uint8_t *UID, uint8_t Block_Size, uint8_t *Write_Multi_Block_Param,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Write Multiple Blocks command according to the ISO15693 standard
Command 24H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) +
'0' + Operation mode(4 bits), refer to the ISO15693 specification and
ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)
Block_Size Size of data block (byte)(different brands may be different)

*Write_Multi_Block_Param
1st byte: serial number of the first data block to be written
2nd byte: number of data blocks to be written
3rd byte…Nth byte: data to be written

Output
*Data_Resp

If the command succeeds, reply with the Write Multiple Blocks (24H)
command data;
If a Flag error occurs, respond with the error code of the ISO15693
standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in
the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 31 / 35 March 17, 2022

Name uint8_t ISO15693_Write_AFI (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t AFI_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Write AFI command according to the ISO15693 standard
Command 27H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for
details

*UID Unique ISO15693 identifier (8-byte)
AFI_Value VICC application type locked by VCD

Output
*Data_Resp

If the command succeeds, reply with the Write AFI (27H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Lock_AFI (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Lock AFI command according to the ISO15693 standard, always locking the AFI value into
VICC memory

Command 28H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for
details

*UID Unique ISO15693 identifier (8-byte)

Output
*Data_Resp

If the command succeeds, reply with the Lock AFI (28H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Write_DSFID (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t DSFID_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Executes Write DSFID (Data Storage Format Identifier) command according to the ISO15693 standard
Command 29H

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for
details

*UID Unique ISO15693 identifier (8-byte)
DSFID_Value Data storage format identifier value

Output
*Data_Resp

If the command succeeds, reply with the Write DSFID (29H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 32 / 35 March 17, 2022

Name uint8_t ISO15693_Lock_DSFID (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Executes Lock DSFID (Data Storage Format Identifier) command according to the ISO15693 standard,
always locking the DSFID value into VICC memory

Command 2AH

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for
details

*UID Unique ISO15693 identifier (8-byte)

Output
*Data_Resp

If the command succeeds, reply with the Lock DSFID (2AH) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Get_System_Information (uint8_t Speed, uint8_t Non_Inv_Mode,

uint8_t *UID, uint8_t *Data_Resp, uint16_t *LenData_Resp)
Function Gets ICC system information
Command 2BH

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation
mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for
details

*UID Unique ISO15693 identifier (8-byte)

Output
*Data_Resp

If the command succeeds, reply with the Get System Information (2BH) command
data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data
Return For the state after the function is processed, refer to the comments in the program

Name uint8_t ISO15693_Get_Multiple_Block_Security_Status (uint8_t Speed, uint8_t Non_Inv_Mode,
uint8_t *UID, uint8_t *Get_Multi_Block_Secure_Param, uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Gets the security status of multiple blocks of VICC
Command 2CH

Input

Speed High nibble: TX speed; Low nibble: RX speed

Non_Inv_Mode
RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1
bit) + '0' + Operation mode(4 bits), refer to the ISO15693
specification and ISO15693_Category.h file for details

*UID Unique ISO15693 identifier (8-byte)

*Get_Multi_Block_Secure_Param 1st byte: serial number of the first data block to be read
2nd byte: number of data blocks to be read

Output
*Data_Resp

If the command succeeds, reply with the Get Multiple Block
Security Status (2CH) command data;
If a Flag error occurs, respond with the error code of the
ISO15693 standard;
If the command fails, reply with an error message;
For other states, no data is present

*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the
comments in the program

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 33 / 35 March 17, 2022

BC45B4523 Chip Function

Name uint8_t Transparent_With_CRC (uint8_t *Data_Tx, uint16_t LenData_Tx, uint8_t TimeOut,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Transmits data with the calculated CRC byte and checks the received response data using the CRC. If
the received CRC is correct, the Data_Resp will not show the CRC byte.

Input

*Data_Tx Data to be transmitted
LenData_Tx Length of data to be transmitted
TimeOut RF data response waiting time

0x00: use the last setting
0x01: 1ms
0x02: 2ms
0x03: 4ms
0x04: 8ms
0x05: 16ms
0x06: 32ms
0x07: 64ms
0x08: 128ms
0x09: 256ms
0x0A: 512ms
0x0B: 1s
0x0C: 2s
0x0D: 4s
0x0E: 8s
0x0F: 16s
0x10: 32s

Output
*Data_Resp Response data
*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in the program

Name uint8_t Transparent_Without_CRC (uint8_t *Data_Tx, uint16_t LenData_Tx, uint8_t TimeOut,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

Function Transmits data without the CRC byte and do not check CRC when receiving response data

Input
*Data_Tx Data to be transmitted
LenData_Tx Length of data to be transmitted
TimeOut Refer to Transparent_With_CRC for details

Output
*Data_Resp Response data
*LenData_Resp Length of the response data

Return For the state after the function is processed, refer to the comments in the program

Demo Board Client Function

Name uint8_t ScanUID_ISO14443ATagType(void)
Function Scans the UID of ISO14443A tag type
Input None
Output None
Return For the state after the function is processed, refer to the comments in the program.

Name uint8_t ScanUID_ISO14443BTagType(void)

Function Scans the UID of ISO14443B tag type
Input None
Output None
Return For the state after the function is processed, refer to the comments in the program.

Name uint8_t ScanUID_ISO15693TagType(void)

Function Scans the UID of ISO15693 tag type
Input None
Output None
Return For the state after the function is processed, refer to the comments in the program.

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 34 / 35 March 17, 2022

Conclusion

Using a demo board example, this text has introduced how to use the BC45B4523 NFC reader,

including hardware and software descriptions, which can help users with their rapid product

development.

Reference Material

Reference files: BC45B4523, HT32F52241, HT42B534-2 datasheet.

For more details, refer to the Holtek website: www.holtek.com.

Versions and Modification Information
Date Author Issue Modify Information

2022.02.21 王冠中 V1.10 Update the attachment program.

2020.06.11 王冠中 V1.00 First version.

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing

on this website ('Information') are for reference only and is subject to change at any time without

prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies

(hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the

accuracy of the Information on this website, no express or implied warranty is given by Holtek to

the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system

problems or data loss) whatsoever arising in using or in connection with the use of this website by

any party. There may be links in this area, which allow you to visit the websites of other companies.

These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to

whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or

howsoever caused directly or indirectly in connection with your access to or use of this website, the

content thereon or any goods, materials or services.

Governing Law

The Disclaimer contained in the website shall be governed by and interpreted in accordance with

the laws of the Republic of China. Users will submit to the non-exclusive jurisdiction of the

Republic of China courts.

http://www.holtek.com/

 BC45B4523 NFC Reader Development Board Application Note

AN0573EN V1.10 35 / 35 March 17, 2022

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all

changes are effective immediately upon posting to the website.

	Introduction
	Functional Description
	Features

	Hardware Description
	Circuit Diagram
	Circuit Block Diagram
	Circuit Description
	PCB Appearance and Hardware Functional Description

	Software and Program Description
	Software Description
	Architecture Description
	Software Instructions
	UART Command Description

	Holtek NFC Reader Library Instructions
	Directory Structure
	Main Program Flowchart
	Card Detection Flowchart
	Library Functions
	Category List
	ISO14443A Category
	Crypto_M
	ISO14443B Category
	ISO15693 Category
	BC45B4523 Chip Function
	Demo Board Client Function

	Conclusion
	Reference Material
	Versions and Modification Information
	Disclaimer
	Limitation of Liability
	Governing Law
	Update of Disclaimer

[image: 項目0031]Amendments

[image: HTKlogo] BC45B4523 NFC Reader Development Board Application Note

BC45B4523 NFC Reader Development Board Application Note

[bookmark: OLE_LINK1]D/N: AN0573EN

Introduction

The BC45B4523 is an NFC reader controller supporting a transmission frequency of 13.56MHz. It is compatible with the ISO14443A, ISO14443B, ISO15693 protocols and supports the Crypto_M encryption and decryption functions. The ISO14443A/B protocols provide four bit rate options, which are 106Kbps, 212Kbps, 424Kbps and 848Kbps. Multiple protocols are able to work with multiple types of NFC tags, making the device an excellent solution for short distance secure transmission.

The BC45B4523 provides a maximum RF output current of 250mA, allowing for an increased sensing distance and also supports a low power automatic card detection mode. The integrated 3.3V LDO, which has a maximum output current of 150mA, can provide power for the master MCU.

This text will show how to use the BC45B4523 along with the BC45B4523 NFC reader development board. Together with the provided program library, this will assist users to get started quickly in using this device.

Functional Description

This application example includes PC software which is connected to the development board by means of a USB virtual COM. Command procedures, UID read and data access to various NFC tags can be implemented using this software. The software also includes an advanced mode, where users are able to complete the required command procedures for some special NFC tags by sending commands.

A jumper is located on the development board to select the power source for the master MCU and NFC reader transmitter, allowing users to set up different environments.

Features

· NFC Reader Development Board

· Connects with the PC using a USB virtual COM port

· UART transmission baud rate = 115200bps

· Supports BC45B4523 3.3V and 5V (VUSB) voltage selection

· MCU HT32F52241 powered by the BC45B4523’s integrated 3.3V LDO or an external 3.3V LDO

· Provides a buzzer to give an indication sound after finishing tag read/write commands

· Supports ISO14443A, ISO14443B, ISO15693 and Crypto-M cards

· [bookmark: OLE_LINK15][bookmark: OLE_LINK16]Supports hardware card detection function

· Application sample cards

ISO14443A Type 2: NXP NTAG213 A card, tag IC: NTAG213
ISO14443B Type 3: ST SRT512 B card, tag IC: ST25TB512
ISO15693 Type 5: NXP SL2D2 V card, tag IC: SL2S2002_SL2S2102
Mifare Classes 1K card: tag IC MF1ICS50
Mifare Classes 4K card: tag IC MF1S70YYX

· NFC Reader Library

· Supports ISO14443-1, ISO14443-2, ISO14443-3 protocols

· Supports ISO14443A card UID read and Type 2 tag read/write

· Supports ISO14443B card UID read

· Supports Crypto-M card UID read and card read/write

· Supports ISO15693 card UID read and card read/write

· Professional mode can be used to support customised commands

Hardware Description

Circuit Diagram

[image:]

Figure 1

[image:]

Figure 2

[bookmark: OLE_LINK18][bookmark: OLE_LINK19][bookmark: OLE_LINK26]Circuit Block Diagram

[bookmark: OLE_LINK17]The hardware block diagram is shown in Figure 3. This application example uses a USB interface to connect to the PC. A USB-to-UART bridge IC is used to bridge the master MCU HT32F52241 and USB interface. The HT32F52241 uses an SPI interface to control the BC45B4523 NFC reader. The BC45B4523 circuit includes an RF matching circuit and an NFC antenna.

In addition, the PCB board includes an HT7833 LDO. Users can select either the BC45B4523’s internal 3.3V LDO or the HT7833 as the power source for the HT32F52241.

[image:]

Figure 3. Hardware Block Diagram

Circuit Description

This section will focus on the BC45B4523 circuit description. Refer to the relevant datasheet for the HT32F52241 and HT42B534-2 application circuits.

· Control Interface and Integrated LDO

As shown in Figure 4, the BC45B4523 uses its SPI interface as the control interface and has an IRQ pin for its interrupt output. It also has an integrated 3.3V LDO with a maximum current output of 150mA, which can be provided for use by external circuits such as the master MCU.

[image:]

Figure 4. SPI Control Interface

· TX Matching Circuit

The BC45B4523 NFC TX matching circuit is shown below where TX1 and TX2 are the RF differential output pins providing an output frequency of 13.56MHz. Other matching circuit components are described in the following table.

Figure 5. TX Matching Circuit

		Components

		Main Purpose

		L1, L2, C14, C15, C16, C17, C41

		EMC filtering

		C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C37

		Impedance matching

		R3, R4

		Antenna Q adjustment

Table 1. Component Main Purposes

Figure 6 shows the TX matching circuit measurement method. Connect the SMA connector to the TX1/TX2 terminal, then observe the Smith Chart using a network analyser and adjust the characteristic impedance. The recommended value is 25Ω±10%.

The characteristic impedance of this example is 23.4+j0.1Ω, as shown in the Smith Chart in Figure 7.

[image:]

Figure 6. TX Matching Circuit Measurement

[image:]

Figure 7. Smith Chart

· Antenna Q Value Adjustment

The antenna’s Q value is related to bandwidth. The antenna impedance characteristic measurement is shown in Figure 8. Connect the SMA connector to both terminals of the antenna, measure the resistance (R) and inductance (L) characteristics of the antenna using a network analyser, and adjust the Q value through R3/R4 in the circuit. The recommended Q value for the ISO14443 standard is in a range of 10~30.

Figure 9 shows the antenna characteristics of this example, which is about 588mΩ and 568nH.

Q(ant+R3+R4) = ω × Lant / R(ant+R3+R4)

= 2 × π × fc × Lant / R(ant+R3+R4)

= 2 × π × 13.56M × 568n / 2.6

≒ 18.6

BW = fc / Q(ant+R3+R4)

= 725K

[image:]

Figure 8. Antenna Impedance Characteristic Measurement

[image:]

Figure 9. Antenna Characteristics

· RX Receiver Circuit

As shown in the BC45B4523 NFC RX matching circuit below, VMID is a 1.65V DC reference voltage, C12 is a filter capacitor for VMID and RX is an RF input signal receiving pin. Either C13, which is close to the antenna terminal, or C28 which is close to the transmitting terminal, together with R1 and R2 can implement a carrier frequency divider, which is used to send the received signal to the RX pin.

After the RxAutoPD buffer is disabled, the RX input signal should be in a range of 2.5~2.9Vp-p. The calculation formula is as follows:

VRX = (VTX × R2) / (R1 + R2)

Here VTX indicates the voltage of C13 or C28 at the TX matching circuit terminal.

[image:]

Figure 10. RX Matching Circuit

In this example, the VMID pin voltage is 1.60V and RX Vp-p is 2.76V, as shown in Figure 11.

[image:]

Figure 11. RX Waveform

· RX Layout Considerations

The RX layout routing and components should not be located close to the crystal oscillator (Y1). As shown in Figure 12 below, Y1 should be surrounded by ground surfaces to reduce interference.

[image:]

Figure 12. RX Layout

PCB Appearance and Hardware Functional Description

[image:]

Figure 13

· Operating Description

(1) Connect to the PC USB port via a Micro USB connector.

(2) Use the SWDP interface to edit and program the firmware.

(3) Place the tag above the antenna for tag sensing.

(4) No metal objects should be located nearby during the tag sensing and card detection calibration.

· Jumper Description

(1) J1 and J2 should remain shorted.

(2) [bookmark: OLE_LINK6][bookmark: OLE_LINK7]J3 is used to select the power source for the BC45B4523 TVDD (RF transmitter power): 3.3V–provided by LDO (HT7833); 5V–provided by VUSB.

(3) J4 is used to select the power source for the 3.3V VDD (MCU VDD / bridge IC VDD): LDO (HT7833) 3.3V output or the BC45B4523’s integrated 3.3V LDO output.

· BC45B4523 Card Detection Current Description

(1) Use J3 to select the power source for the BC45B4523 TVDD (RF transmitter power): HT7833.

(2) Use J4 to select the power source for the VDD (MCU VDD / bridge IC VDD): HT7833 3.3V output.

(3) Current Measurement

a) Short connect the BC45B4523’s VDD (VDDIO) and VIN, then connect to the HT7833 output. Other signals are connected normally as shown in Figure 14.

[image:]

Figure 14

b) [bookmark: OLE_LINK9][bookmark: OLE_LINK10]Card detection mode current measurement: select the tag detection mode on the software’s Advanced page–Sleep & 500ms.

c) Use an oscilloscope to examine the antenna transmitter waveform (Figure 15). The RF transmits a signal once every 500ms for about 12.5µs (Figure 15-(B)).

d) For the stage shown in Figure 15-(A), it is not possible to use the oscilloscope current mode to make measurements due to its small magnitude, measured only in microamperes. A ammeter is used instead to obtain the current value, about 5µA.

e) For the stage shown in Figure 15-(B), it is possible to use the oscilloscope current mode to make measurements. As shown in Figure 16, there are two intervals of 12.5µs every 1s with an average current of about 54mA for each interval. Averaging the current in these two intervals for 1s gives about 1.35µA.

f) Adding the step (d) and (e) values gives about 6.35µA.

[image:]

Figure 15

[image:]

Figure 16

Software and Program Description

This application example provides the relevant PC software which controls the BC45B4523 NFC reader to implement read and write card operations. The HT32 firmware and library are also provided to assist with rapid user development.

[bookmark: Link11]Software Description

Download the HT32 series library from the Holtek official website: HT32F5xxxx (M0+) Standard Peripheral Firmware Library.

After decompression, create an NFC directory in the Application directory. Decompress the example project and place it in this directory. The project is developed using the Keil uVision 5.

Architecture Description

The program application block diagram is as follows.

[image:]

[bookmark: OLE_LINK35][bookmark: OLE_LINK36]The BC45B4523 NFC reader demo board is composed of a master MCU – HT32F52241, a UART bridge IC – HT42B534-2, and an NFC reader – BC45B4523. After receiving UART commands from the PC, the HT32F52241 controls the BC45B4523 using its SPI interface to transmit ISO14443 and IO15693 protocol radio frequencies. By using this UART solution, users do not need to develop interface software but only need to use general serial port software or a built-in terminal within Windows to send commands to the NFC reader.

The structure of the function library is as follows.

[image:]

· User Functions

(1) IO/SPI/UART/PWM settings

(2) UART/Reader command processing

(3) UID scanning process

· Protocol Layer

(1) Crypto_M encryption and decryption process

(2) [bookmark: OLE_LINK13][bookmark: OLE_LINK14]ISO14443A RF settings and related commands

(3) ISO14443B RF settings and related commands

(4) ISO15693 RF settings and related commands

· Command Library Layer

(1) BC45B4523 register read/write

(2) BC45B4523 FIFO read/write

(3) BC45B4523 protocol related functional settings

· Standard Peripheral Driver

(1) [bookmark: OLE_LINK20][bookmark: OLE_LINK21]SPI transmitting/receiving functions

(2) UART transmitting/receiving functions

(3) System clock settings

Software Instructions

After the program starts, it will automatically open the first COM port found. If it is not the correct one, reselect another COM port.

[image:]UID Scan

Port Selection

Read/Write

Output Area

Advanced Command Area

· ISO14443A (NFC-A)

(1) UID scan is used to obtain the tag UIDs.

(2) The flowchart on the right shows the decomposition process to help users understand the UID scan actions.

a) Click [RF Rst] to reset RF click [REQA] then the output area will display the ATQA returned by tag click [AntiCol 1] then the output area will display the UID Level 1 code returned by tag click [Sel 1] click [AntiCol 2] then the output area will display the UID Level 2 code returned by tag click [Sel 2]. For a 7-byte UID, steps Sel 1 and 2 are sufficient.

b) For a 10-byte UID, one more [AntiCol 3] step is required to obtain the UID Level 3 code.

(3) After execution to the ACTIVE state, the reader can enter the HALT state by clicking [Halt] and then enter the READY state by clicking [WUPA].

(4) The read/write function presently only supports Type 2 tags with simple protocols.

(5) For other tags with more operation procedures or customised commands, users can use the Data Exchange area to fill in commands and data to implement the required access functions.

(6) All the execution results will be displayed in the output area.

[image:]

· [bookmark: ISO14443B]ISO14443B (NFC-B)

(1) The screen function is the same as ISO14443A.

(2) Read and write operations of Type B cards are not yet supported. Users should execute commands via the Data Exchange function to implement these operations.

(3) The ST25TB512 is a non-standard Type4 B card in which the UID read and read/write operations are as follows. For detailed commands and procedures, refer to the ST25TB512 datasheet.

a) UID Read Example

[image:]

b) User Area Read/Write Example

[image:]

· ISO15693(NFC-V)

(1) UID(Inventory) scan function: Time Slots=1 and Time Slots=16 two settings.

When Time Slots=1, only one tag can be scanned at the same time.

When Time Slots=16, up to 16 tags can be scanned at the same time.

Click [Inventory], now the UIDs will be obtained according to the Time Slots setting and displayed in the Inventory pull-down menu.

(2) Click [Read]/[Write] button to access the selected inventory tag.

(3) For other tags with customised commands, users should issue relevant commands via the Data Exchange function.

[image:]

· Crypto_M

(1) The Crypto_M function provided by Holtek is compatible with Mifare tags.

(2) When implementing read/write operations to Crypto_M tags, Key-A or Key-B must be provided.

(3) [bookmark: OLE_LINK41][bookmark: OLE_LINK42]Different blocks can be set with different permissions, refer to the Mifare tag specification for the permission setting details.

[image:]

※ The dotted frame area is for engineering testing, it must not be selected or modified.

· Advanced

(1) Card Detection Mode

Holtek’s NFC reader demo board provides three power modes: Deep Sleep1, Sleep and Normal, which refer to the status that the master MCU maintains when a tag has not yet been detected. The task of regularly detecting tags is distributed to the BC45B4523, greatly reducing the power consumption. The BC45B4523 will wake up the master MCU only after a tag is detected.

a) Before enabling the card detection function of the BC45B4523, click [CD Calibration] to implement RF calibration without placing any tag above the reader.

b) [bookmark: OLE_LINK2][bookmark: OLE_LINK5]Configure the master MCU’s power mode and the BC45B4523’s wake-up time.

c) After setting the tag type to be detected, click the [Scan] button to enter the tag scan mode.

d) [bookmark: CDWakeuptime]To change the card detection wake-up time, stop the ongoing operation first and then select the time required.

(2) BC45B4523 Register Access Function

This is an advanced function which is used to read and write the internal registers of the BC45B4523. Refer to the BC45B4523 datasheet for the functional description of the registers.

[Read]	Read the value of a single register

[Read All]	Read all the registers	

[Write]	Write into a single register

[Default]	Write default values into all the registers

UART Command Description

The software provided by Holtek communicates with the NFC reader via UART commands, which are described below.

		Command

		Parameter

		Description

		reg

		-rd [-s0/-s1] <addr>

-rd -all

-wr [-s0/-s1] <addr> <data>

-wr -default

		Read addr (address) in sector 0/1

Read all addresses

Write data into addr in sector 0/1

Write default values into all addresses

		rf

		-off

-reset

		Turn off field

Restart field

		cd

		-cal

-lpmcu <deep sleep1/sleep/normal>

-wkuptime <100/200/500/1000>

		RF calibration

Set master MCU’s power mode

Set BC45B4523 card detection interval

		Scan

		-start　<n>

		1. Start card detection according to card type

2. n=0x01: NFC-A

 n=0x02: NFC-B

 n=0x04: NFC-V

 n=0x03: NFC-A and NFC-B

 … and so on

3. Enter any byte via UART to end detection

		a

		-setup

-reqa

-wupa

-halt

-anticol <1/2/3>

-sel <1/2/3> <id>

-getuid

-trans <-crc/-nocrc> <data>

		Set to ISO14443A information interface

[bookmark: OLE_LINK11][bookmark: OLE_LINK12]Execute ISO14443A reqa command

Execute ISO14443A wupa command

Execute ISO14443A halt command

Execute ISO14443A anti collision command

Execute ISO14443A select command

Read UID

[bookmark: OLE_LINK22][bookmark: OLE_LINK23]Send data with (without) checksum

		b

		-setup

-reqb

-wupb

-halt

-attrib

-getuid

-trans <-crc/-nocrc> <data>

		Set to ISO14443B information interface

Execute ISO14443B reqb command

Execute ISO14443B wupb command

Execute ISO14443B halt command

Execute ISO14443B attrib command

Read UID

[bookmark: OLE_LINK27][bookmark: OLE_LINK28]Send data with (without) checksum

		v

		-setup

-inv1

-inv16

-quiet <uid>

-rd <-rd> <addr> <uid>

-wr <-wr> <addr> <data> <uid>

-trans <-crc/-nocrc> <data>

		Set to ISO15693 information interface

TimeSlots=1 to get inventory

TimeSlots=16 to get inventory

Issue quiet command to a specific tag

Read from the addr address of a tag

Write data to the addr address of a tag

Send data with (without) checksum

		mifare

		-cread <ka/kb> <key> <block>

-cwrite <ka/kb> <key> <block> <data>

		Read from block with ka=key or kb=key

Write data to block with ka=key or kb=key

		t2t

		-rd <addr>

-wr <addr> <data>

		Read from the addr address of a Type 2 tag

Write data to the addr address of a Type 2 tag

Note: Add \r (return) to the last byte of the command, which means the end of a command.

Holtek NFC Reader Library Instructions

Directory Structure

Main Program Flowchart

[bookmark: _Toc37694366]

Card Detection Flowchart

Library Functions

Category List

		

		API

		Functional Description

		ISO14443A Category

		ISO14443A_Command

		ISO14443A interface command

		

		ISO14443A_Config

		ISO14443A initialisation setup

		

		ISO14443A_Get_Speed_Reader

		Get reader speed configuration

		

		ISO14443A_Request

		Execute ISO14443A Request command

		

		ISO14443A_WakeUp

		Execute ISO14443A Wakeup command

		

		ISO14443A_Anticoll

		Execute ISO14443A Anti Collision command

		

		ISO14443A_Select

		Execute ISO14443A Select command

		

		ISO14443A_RATS

		Execute ISO14443A RATS (Request for Answer To Select) command

		

		ISO14443A_PPS

		Execute ISO14443A PPS (Protocol and Parameter Selection) command

		

		ISO14443A_Halt

		Execute ISO14443A Halt command

		Crypto_M

		ISO14443A_Load_Key

		Load key

		

		ISO14443A_Authentication

		Execute Crypto_M authentication

		

		ISO14443A_Write_Mifare_Block

		Execute Crypto_M Write Block command

		

		ISO14443A_Read_Mifare_Block

		Execute Crypto_M Read Block command

		

		ISO14443A_Decrement

		Execute Crypto_M Decrement command

		

		ISO14443A_Increment

		Execute Crypto_M Increment command

		

		ISO14443A_Restore

		Execute Crypto_M Restore command

		

		ISO14443A_Transfer

		Execute Crypto_M Transfer command

		ISO14443B Category

		ISO14443B_Command

		ISO14443B interface command

		

		ISO14443B_Config

		ISO14443B initialisation setup

		

		ISO14443B_Get_Speed_Reader

		Get reader speed configuration

		

		ISO14443B_Request

		Execute ISO14443B Request command

		

		ISO14443B_WakeUp

		Execute ISO14443B Wakeup command

		

		ISO14443B_ATTRIB

		Execute ISO14443B Attribute command

		

		ISO14443B_Halt

		[bookmark: OLE_LINK29][bookmark: OLE_LINK30]Execute ISO14443B Halt command

		ISO15693

Category

		ISO15693_Command

		ISO15693 interface command

		

		ISO15693_Config

		ISO15693 initialisation setup

		

		ISO15693_Get_Speed_Reader

		Get reader speed configuration

		

		ISO15693_Inv_Req_1_Slot

		Execute ISO15693 Inventory (1 Slot) command

		

		ISO15693_Inv_Req_16_Slots

		Execute ISO15693 Inventory (16 Slots) command

		

		ISO15693_Stay_Quiet

		Execute ISO15693 Stay Quiet command

		

		ISO15693_Select

		Execute ISO15693 Select command

		

		ISO15693_Reset_to_Ready

		Execute ISO15693 Reset to Ready command

		

		ISO15693_Read_Single_Block

		Execute ISO15693 Read Single Block command

		

		ISO15693_Write_Single_Block

		Execute ISO15693 Write Single Block command

		

		ISO15693_Lock_Block

		Execute ISO15693 Lock Block command

		

		ISO15693_Read_Multiple_Blocksgfs

		Execute ISO15693 Read Multiple Blocks command

		

		ISO15693_Write_Multiple_Blocks

		Execute ISO15693 Write Multiple Blocks command

		

		ISO15693_Write_AFI

		Execute ISO15693 Write AFI command

		

		ISO15693_Lock_AFI

		Execute ISO15693 Lock AFI command

		

		ISO15693_Write_DSFID

		Execute ISO15693 Write DSFID command

		

		ISO15693_Lock_DSFID

		Execute ISO15693 Lock DSFID command

		

		ISO15693_Get_System_Information

		Execute ISO15693 Get System Information command

		

		ISO15693_Get_Multiple_Block_Security_Status

		Read the security status of multiple blocks of VICC

		BC45B4523
Chip Function

		Transparent_With_CRC

		Transmit/receive data with CRC

		

		Transparent_Without_CRC

		[bookmark: OLE_LINK31][bookmark: OLE_LINK32]Transmit/receive data without CRC

		Demo Board Client Function

		ScanUID_ISO14443ATagType

		Scan the UID of ISO14443A tag type

		

		ScanUID_ISO14443BTagType

		Scan the UID of ISO14443B tag type

		

		ScanUID_ISO15693TagType

		Scan the UID of ISO15693 tag type

ISO14443A Category

		Name

		uint8_t ISO14443A_Command (uint8_t Command, uint8_t *Param, uint16_t LenParam,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Follows the ISO14443A and Crypto_M interface commands to support all the functions below. For functional definitions, refer to the ISO14443A_Category.h file.

		Input

		Command

		Command related to ISO14443A/MIFARE

		

		*Param

		Parameter related to the command

		

		LenParam

		Length of the input parameter

		Output

		*Data_Resp

		Response to the operation command

		

		*LenData_Resp

		Length of the response data

		Return

		

		[bookmark: OLE_LINK39][bookmark: OLE_LINK40]For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Config (uint8_t Speed)

		Function

		Configures buffer and RF communication speed for ISO14443A operations

		[bookmark: _Hlk59455160]Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		Output

		None

		

		Return

		

		[bookmark: OLE_LINK37][bookmark: OLE_LINK38]Return the success status

		Name

		uint8_t ISO14443A_Get_Speed_Reader (uint8_t *Speed, uint16_t *LenSpeed)

		Function

		Returns the current RF speed configuration

		Input

		None

		

		Output

		*Speed

		High nibble: TX speed; Low nibble: RX speed

		

		*LenSpeed

		Length of the command output

		[bookmark: OLE_LINK33][bookmark: OLE_LINK34]Return

		

		Return the success status

		[bookmark: _Hlk59455415]Name

		uint8_t ISO14443A_Request (uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Request command according to the ISO14443A standard

		Command

		26H

		Input

		None

		

		Output

		*Data_Resp

		[bookmark: OLE_LINK49][bookmark: OLE_LINK50]If the command succeeds, reply with the corresponding command data;

If the command fails, reply with an error message;

For other states, no data is present

		[bookmark: _Hlk59456594]

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_WakeUp (uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes WakeUp command according to the ISO14443A standard

		Command

		52H

		Input

		None

		

		Output

		*Data_Resp

		If the command succeeds, reply with the WakeUp command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		[bookmark: OLE_LINK43][bookmark: OLE_LINK44]For the state after the function is processed, refer to the comments in the program

		[bookmark: _Hlk59456489]Name

		uint8_t ISO14443A_Anticoll (uint8_t Level, uint8_t CollMask_Value, uint8_t *NumColl,

uint8_t *Coll_Pos, uint8_t *UID, uint16_t *LenUID)

		Function

		Executes Anti Collision command according to the ISO14443A standard, only one card can be selected in the field

		Command

		93H;95H;97H

		Input

		Level

		Selects Cascade Level

		

		CollMask_Value

		Collision bit setup, refer to the ISO14443A_Anticoll function for detailed functional definition

		Output

		*NumColl

		Number of collisions

		

		*Coll_Pos

		Bit position when collision occurs

		

		*UID

		[bookmark: OLE_LINK47][bookmark: OLE_LINK48]Selects a card (UID) to operate on

		

		*LenUID

		Length of the UID received in anti-collision

		Return

		

		For the state after the function is processed, refer to the comments in the program

		[bookmark: _Hlk59456649]Name

		uint8_t ISO14443A_Select (uint8_t Level, uint8_t *UID, uint8_t *Data_Resp,

uint16_t *LenData_Resp)

		Function

		Executes Select command according to the ISO14443A standard

		Command

		93H;95H;97H

		Input

		Level

		Selects Cascade Level (1~3)

		

		*UID

		Selects a card (UID) to operate on

		Output

		*Data_Resp

		[bookmark: OLE_LINK57][bookmark: OLE_LINK58]If the command succeeds, reply with the command data of the card;

If the command fails, reply with an error message;

For other states, no data is present

		[bookmark: _Hlk59457187]

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		[bookmark: _Hlk59457202]Name

		uint8_t ISO14443A_RATS (uint8_t Parameter_Byte, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		[bookmark: _Hlk59457278]Function

		Executes RATS command of the ISO14443A-4 standard

		Command

		E0H

		Input

		Parameter_Byte

		High nibble: FSDI (maximum packet length that can be received by PCD);

Low nibble: CID (logical number of the addressed card)

		Output

		*Data_Resp

		If the command succeeds, reply with the RATS command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_PPS (uint8_t CID, uint8_t PPS0, uint8_t PPS1, uint8_t *Data_Resp,

uint16_t *LenData_Resp)

		Function

		Executes PPS command of the ISO14443A-4 standard

		Command

		D0H

		Input

		CID

		Logical number of the addressed card

		

		PPS0

		Defines whether to transmit PPS1

		

		PPS1

		“0000”+DRI(2-bit) + DSI(2-bit)

DSI: Divisor integer selected from card to reader

DRI: Divisor integer selected from reader to card

		Output

		*Data_Resp

		If the command succeeds, reply with the PPS command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Halt (uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes a Halt command according to the ISO14443A standard

		Command

		50H

		Input

		None

		

		Output

		*Data_Resp

		If the command succeeds, there is no need to respond with data;

If the Halt fails, reply with a HALT message;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

Crypto_M

		Name

		uint8_t ISO14443A_Load_Key (uint8_t *Key)

		Function

		Loads key into the BC45B4523 master key buffer

		Input

		Key

		6-byte key data

		Output

		None

		

		Return

		

		State after the function is processed

		Name

		uint8_t ISO14443A_Authentication (uint8_t Select_Key, uint8_t Block_Num, uint8_t *UID,

uint8_t LenUID)

		Function

		Executes Authentication command of Crypto_M

		Command

		60H;61H

		Input

		Select_Key

		Selects Key_A(0x00) or Key_B(0x01)

		

		Block_Num

		Data block to be authenticated

		

		*UID

		Selects a card (UID) to operate on

		

		LenUID

		Length of the UID

		Output

		None

		

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Write_Mifare_Block (uint8_t Block_Num, uint8_t *Data_Wr,

uint8_t *Data_Resp, uint16_t *LenData_Resp, uint8_t Check_Crypto)

		Function

		Executes Write Block command of Crypto_M

		Command

		A0H

		Input

		Block_Num

		Address to be written with a data block

		

		*Data_Wr

		16-byte data to be written

		Output

		*Data_Resp

		If the command succeeds, no need to respond with data;

If the write operation fails, reply with a NACK message;

For other errors, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		

		Check_Crypto

		Check whether the authentication has passed before execution

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Read_Mifare_Block (uint8_t Block_Num, uint8_t *Data_Resp,

uint16_t *LenData_Resp, uint8_t Check_Crypto)

		Function

		Executes Read Block command of Crypto_M

		Command

		30H

		Input

		Block_Num

		Address of the data block to be read

		Output

		*Data_Resp

		If the command succeeds, reply with the data read out;

If the read operation fails, reply with a NACK message;

For other errors, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		

		Check_Crypto

		Check whether the authentication has passed before execution

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Decrement (uint8_t Block_Num, uint8_t *Decrement_Value,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		C0H

		Command

		Executes Decrement command of Crypto_M

		Input

		Block_Num

		Data block to implement decrement

		

		Decrement_Value

		4-byte subtrahend

		Output

		*Data_Resp

		If the command succeeds, no need to respond with data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Increment (uint8_t Block_Num, uint8_t *Increment_Value,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Increment command of Crypto_M

		Command

		C1H

		Input

		Block_Num

		Data block to implement increment

		

		Increment_Value

		4-byte addend

		Output

		*Data_Resp

		If the command succeeds, no need to respond with data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Restore (uint8_t Block_Num, uint8_t *Restore_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Restore command of Crypto_M

		Command

		C2H

		Input

		Block_Num

		Reads out the value of the data block

		

		Restore_Value

		No real value, any value can be entered

		Output

		*Data_Resp

		If the command succeeds, no need to respond with data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443A_Transfer (uint8_t Block_Num, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Transfer command of Crypto_M

		Command

		B0H

		Input

		Block_Num

		Data block to be set with a new value

		Output

		*Data_Resp

		If the command succeeds, no need to respond with data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

ISO14443B Category

		Name

		uint8_t ISO14443B_Command (uint8_t Command, uint8_t *Param, uint16_t LenParam,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Follows the ISO14443B interface commands to support all the functions below. For functional definitions, refer to the ISO14443B_Category.h file.

		Intput

		Command

		Command related to ISO14443B

		

		*Param

		Parameter related to the command

		

		LenParam

		Length of the input parameter

		Output

		*Data_Resp

		Response to the operation command

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443B_Config (uint8_t Speed)

		Function

		Configures buffer and RF communication speed for ISO14443B operations

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		Output

		None

		

		Return

		

		Return the success status

		Name

		uint8_t ISO14443B_Get_Speed_Reader (uint8_t *Speed, uint16_t *LenSpeed)

		Function

		Returns the current RF speed configuration

		Input

		None

		

		Output

		*Speed

		High nibble: TX speed; Low nibble: RX speed

		

		*LenSpeed

		Length of the command output

		Return

		

		Return the success status

		Name

		uint8_t ISO14443B_Request (uint8_t AFI, uint8_t Num_Slots_N, uint8_t *Slot_Num,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Request command according to the ISO14443B standard

		Input

		AFI

		PICC application type locked by PCD

		

		Num_Slots_N

		Number of slots, refer to the ISO14443B specification for details

		Output

		*Slot_Num

		The first slot number to find a card

		

		*Data_Resp

		If the command succeeds, reply with the corresponding command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443B_WakeUp (uint8_t AFI, uint8_t Num_Slots_N, uint8_t *Slot_Num,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes WakeUp command according to the ISO14443B standard

		Input

		AFI

		PICC application type locked by PCD

		

		Num_Slots_N

		Number of slots, refer to the ISO14443B specification for details

		Output

		*Slot_Num

		The first slot number to find a card

		

		*Data_Resp

		If the command succeeds, reply with the WakeUp command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443B_ATTRIB (uint8_t *PUPI, uint8_t *Param, uint8_t *Higher_Layer,

uint16_t LenHigher_Layer, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Command

		1DH

		Function

		Executes ATTRIB command according to the ISO14443B standard

		Input

		PUPI

		Unique PICC identifier (4-byte)

		

		Param

		4-byte parameter which follows ISO14443B

		

		Higher_Layer

		Higher level information which follows ISO14443B, refer to the ISO14443B specification

		

		LenHigher_Layer

		Length of the obtained higher level information

		Output

		*Data_Resp

		If the command succeeds, reply with the ATTRIB command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO14443B_Halt (uint8_t *PUPI, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Halt command according to the ISO14443B standard

		Command

		50H

		Input

		PUPI

		Unique PICC identifier (4-byte)

		Output

		*Data_Resp

		If the command succeeds, reply with the Halt command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

ISO15693 Category

		Name

		uint8_t ISO15693_Command (uint8_t Command, uint8_t *Param, uint16_t LenParam,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Follows the ISO15693 interface commands to support all the functions below. For functional definitions, refer to the ISO15693_Category.h file.

		Input

		Command

		Command related to ISO15693

		

		*Param

		Parameter related to the command

		

		LenParam

		Length of the input parameter

		Output

		*Data_Resp

		Response to the operation command

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Config (uint8_t Speed)

		Function

		Configures buffer and RF communication speed for ISO15693 operations

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		Output

		None

		

		Return

		

		Return the success status

		Name

		uint8_t ISO15693_Get_Speed_Reader (uint8_t *Speed, uint16_t *LenSpeed)

		Function

		Returns the current RF speed configuration

		Input

		None

		

		Output

		*Speed

		High nibble: TX speed; Low nibble: RX speed

		

		*LenSpeed

		Length of the command output

		Return

		

		Return the success status

		Name

		uint8_t ISO15693_Inv_Req_1_Slot (uint8_t Speed, uint8_t Inv_Mode, uint8_t AFI,
uint8_t Mask_Len, uint8_t *Mask_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Inventory (1 Slot) command according to the ISO15693 standard

		Command

		01H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + AFI mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		AFI

		VICC application type locked by VCD

		

		Mask_Len

		Length of mask code indicating the effective number of bits

		

		*Mask_Value

		Mask code placed in the byte array

		Output

		*Data_Resp

		If the command succeeds, reply with the Inventory(01H) command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Inv_Req_16_Slots (uint8_t Speed, uint8_t Inv_Mode, uint8_t AFI,
uint8_t Mask_Len, uint8_t *Mask_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Inventory (16 Slots) command according to the ISO15693 standard

		Command

		01H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + AFI mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		AFI

		VICC application type locked by VCD

		

		Mask_Len

		Length of mask code indicating the effective number of bits

		

		*Mask_Value

		Mask code placed in the byte array

		Output

		*Data_Resp

		If the command succeeds, reply with the Inventory(01H) command data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Stay_Quiet (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Stay Quiet command according to the ISO15693 standard

		Command

		02H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		Output

		*Data_Resp

		If the command succeeds, there is no need to respond with data;

If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Select (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Select command according to the ISO15693 standard

		Command

		25H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		Output

		*Data_Resp

		If the command succeeds, reply with the Select (25H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Reset_to_Ready (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t *Data_Resp, uint16_t *LenData_Resp) ;

		Function

		Executes the Reset to Ready according to the ISO15693 standard, VICC will return to Ready state

		Command

		26H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		Output

		*Data_Resp

		If the command succeeds, reply with the Reset (26H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Read_Single_Block (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID, uint8_t Block_Num, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Read Single Block command according to the ISO15693 standard

		Command

		20H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		Block_Num

		Serial number of the data block to be read

		Output

		*Data_Resp

		If the command succeeds, reply with the Read Single Block (20H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Write_Single_Block (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID, uint8_t Block_Size, uint8_t *Write_Block_Param, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Write Single Block command according to the ISO15693 standard

		Command

		21H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		Block_Size

		Size of data block (byte)(different brands may be different)

		

		*Write_Block_Param

		1st byte: serial number of the data block to be written

2nd…end: data to be written

		Output

		*Data_Resp

		If the command succeeds, reply with the Write Single Block (21H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Lock_Block (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,

uint8_t Block_Num, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Lock Block command according to the ISO15693 standard

		Command

		22H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		Block_Num

		Serial number of data block to be locked

		Output

		*Data_Resp

		If the command succeeds, reply with the Lock Block (22H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Read_Multiple_Blocks (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID, uint8_t *Read_Multi_Block_Param, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Read Multiple Blocks command according to the ISO15693 standard

		Command

		23H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		*Read_Multi_Block_Param

		1st byte: serial number of the first data block to be read

2nd byte: number of data blocks to be read

		Output

		*Data_Resp

		If the command succeeds, reply with the Read Multiple Blocks (23H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Write_Multiple_Blocks (uint8_t Speed, uint8_t Non_Inv_Mode,

uint8_t *UID, uint8_t Block_Size, uint8_t *Write_Multi_Block_Param,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Write Multiple Blocks command according to the ISO15693 standard

		Command

		24H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		Block_Size

		Size of data block (byte)(different brands may be different)

		

		*Write_Multi_Block_Param

		1st byte: serial number of the first data block to be written

2nd byte: number of data blocks to be written

3rd byte…Nth byte: data to be written

		Output

		*Data_Resp

		If the command succeeds, reply with the Write Multiple Blocks (24H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Write_AFI (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t AFI_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Write AFI command according to the ISO15693 standard

		Command

		27H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		AFI_Value

		VICC application type locked by VCD

		Output

		*Data_Resp

		If the command succeeds, reply with the Write AFI (27H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Lock_AFI (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Lock AFI command according to the ISO15693 standard, always locking the AFI value into VICC memory

		Command

		28H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		Output

		*Data_Resp

		If the command succeeds, reply with the Lock AFI (28H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Write_DSFID (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t DSFID_Value, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Write DSFID (Data Storage Format Identifier) command according to the ISO15693 standard

		Command

		29H

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		DSFID_Value

		Data storage format identifier value

		Output

		*Data_Resp

		If the command succeeds, reply with the Write DSFID (29H) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Lock_DSFID (uint8_t Speed, uint8_t Non_Inv_Mode, uint8_t *UID,
uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Executes Lock DSFID (Data Storage Format Identifier) command according to the ISO15693 standard, always locking the DSFID value into VICC memory

		Command

		2AH

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		Output

		*Data_Resp

		If the command succeeds, reply with the Lock DSFID (2AH) command data;
If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Get_System_Information (uint8_t Speed, uint8_t Non_Inv_Mode,
uint8_t *UID, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Gets ICC system information

		Command

		2BH

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		Output

		*Data_Resp

		If the command succeeds, reply with the Get System Information (2BH) command data;

If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t ISO15693_Get_Multiple_Block_Security_Status (uint8_t Speed, uint8_t Non_Inv_Mode,

uint8_t *UID, uint8_t *Get_Multi_Block_Secure_Param, uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Gets the security status of multiple blocks of VICC

		Command

		2CH

		Input

		Speed

		High nibble: TX speed; Low nibble: RX speed

		

		Non_Inv_Mode

		RFU_Flg(1 bit) + Option Flg(1 bit) + Protocol Extension Flg(1 bit) + '0' + Operation mode(4 bits), refer to the ISO15693 specification and ISO15693_Category.h file for details

		

		*UID

		Unique ISO15693 identifier (8-byte)

		

		*Get_Multi_Block_Secure_Param

		1st byte: serial number of the first data block to be read

2nd byte: number of data blocks to be read

		Output

		*Data_Resp

		If the command succeeds, reply with the Get Multiple Block Security Status (2CH) command data;

If a Flag error occurs, respond with the error code of the ISO15693 standard;
If the command fails, reply with an error message;

For other states, no data is present

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

BC45B4523 Chip Function

		Name

		uint8_t Transparent_With_CRC (uint8_t *Data_Tx, uint16_t LenData_Tx, uint8_t TimeOut,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Transmits data with the calculated CRC byte and checks the received response data using the CRC. If the received CRC is correct, the Data_Resp will not show the CRC byte.

		Input

		*Data_Tx

		Data to be transmitted

		

		LenData_Tx

		Length of data to be transmitted

		

		TimeOut

		RF data response waiting time

0x00: use the last setting

0x01: 1ms

0x02: 2ms

0x03: 4ms

0x04: 8ms

0x05: 16ms

0x06: 32ms

0x07: 64ms

0x08: 128ms

0x09: 256ms

0x0A: 512ms

0x0B: 1s

0x0C: 2s

0x0D: 4s

0x0E: 8s

0x0F: 16s

0x10: 32s

		Output

		*Data_Resp

		Response data

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

		Name

		uint8_t Transparent_Without_CRC (uint8_t *Data_Tx, uint16_t LenData_Tx, uint8_t TimeOut,

uint8_t *Data_Resp, uint16_t *LenData_Resp)

		Function

		Transmits data without the CRC byte and do not check CRC when receiving response data

		Input

		*Data_Tx

		Data to be transmitted

		

		LenData_Tx

		Length of data to be transmitted

		

		TimeOut

		Refer to Transparent_With_CRC for details

		Output

		*Data_Resp

		Response data

		

		*LenData_Resp

		Length of the response data

		Return

		

		For the state after the function is processed, refer to the comments in the program

Demo Board Client Function

		Name

		uint8_t ScanUID_ISO14443ATagType(void)

		Function

		Scans the UID of ISO14443A tag type

		Input

		None

		

		Output

		None

		

		Return

		

		For the state after the function is processed, refer to the comments in the program.

		Name

		uint8_t ScanUID_ISO14443BTagType(void)

		Function

		Scans the UID of ISO14443B tag type

		Input

		None

		

		Output

		None

		

		Return

		

		For the state after the function is processed, refer to the comments in the program.

		Name

		uint8_t ScanUID_ISO15693TagType(void)

		Function

		Scans the UID of ISO15693 tag type

		Input

		None

		

		Output

		None

		

		Return

		

		For the state after the function is processed, refer to the comments in the program.

Conclusion

Using a demo board example, this text has introduced how to use the BC45B4523 NFC reader, including hardware and software descriptions, which can help users with their rapid product development.

Reference Material

Reference files: BC45B4523, HT32F52241, HT42B534-2 datasheet.

[bookmark: _GoBack]For more details, refer to the Holtek website: www.holtek.com.

Versions and Modification Information

		[bookmark: OLE_LINK4][bookmark: OLE_LINK3]Date

		Author

		Issue

		Modify Information

		2022.02.21

		王冠中

		V1.10

		Update the attachment program.

		2020.06.11

		王冠中

		V1.00

		First version.

Disclaimer

All information, trademarks, logos, graphics, videos, audio clips, links and other items appearing on this website ('Information') are for reference only and is subject to change at any time without prior notice and at the discretion of Holtek Semiconductor Inc. and its related companies (hereinafter 'Holtek', 'the company', 'us', 'we' or 'our'). Whilst Holtek endeavors to ensure the accuracy of the Information on this website, no express or implied warranty is given by Holtek to the accuracy of the Information. Holtek shall bear no responsibility for any incorrectness or leakage.

Holtek shall not be liable for any damages (including but not limited to computer virus, system problems or data loss) whatsoever arising in using or in connection with the use of this website by any party. There may be links in this area, which allow you to visit the websites of other companies. These websites are not controlled by Holtek. Holtek will bear no responsibility and no guarantee to whatsoever Information displayed at such sites. Hyperlinks to other websites are at your own risk.

Limitation of Liability

In no event shall Holtek Limited be liable to any other party for any loss or damage whatsoever or howsoever caused directly or indirectly in connection with your access to or use of this website, the content thereon or any goods, materials or services.

Governing Law

The Disclaimer contained in the website shall be governed by and interpreted in accordance with the laws of the Republic of China. Users will submit to the non-exclusive jurisdiction of the Republic of China courts.

Update of Disclaimer

Holtek reserves the right to update the Disclaimer at any time with or without prior notice, all changes are effective immediately upon posting to the website.

2

	

[bookmark: OLE_LINK8][bookmark: OLE_LINK24][bookmark: OLE_LINK25][bookmark: _Hlk431588889]AN0573EN V1.10	34 / 35	March 17, 2022

image3.png

RF Match

Circuit BCA5B4523 HT32F52241 - HT42B5342

image4.png

I0VDD

GND

Vin

1

GND 2

RQ e F

NCS a
SPIMOSI

MOSL 5
SPIMISO

L322 spisce|©

sck 7

8

9

VREGIN

VREGOUT

image5.emf

Microsoft_Visio___.vsdx

image6.png

1k

e Ik
] ig};‘i‘:::#%:ﬂ EaEn |
C37 — p cat
- - 4.7pF
JESC N S -
! T w

l lCZl
P

image7.png

ER0BEEag

image8.png

o
rn.m(#
BRTERRCGEENS

HOLTEX SEMICONGUCTOR INC.

image9.png

\
1

[T

L T
VL L/K?%

image10.png

cn2

0 1uF
- R2
Rl 470
33K
l lczo
R c13 SpF C28
18pF NC
W Io L
C26 S C24 EmemC22 47pF SmemCl6 SmmCld
NC 68pF I~ 270pF T5pF | G8pF
C37 41
82, - - 4.7pF
c27

R4

Txe TsprszpI |c19 T rsor T osor

25 mm—C23

-y

C15

47pF

l ICZ[
SpF

image11.png

I Pos: —40,00ns CURSOR
Type

Tek Il

CH1 1.00%
Lse multipurpose knob to move Cursor 1

image12.png

image13.png

NFC Antenna

5905606960

BC4584523
NFC READER
Develop Board

image14.png

©
; HDLTEI(#

EERTERRCSEAS

HOLTEK SEMICONOUCTOR INC.

BC45B4523
NFC READER
Develop Board
Veri0 20190214

image15.emf

image16.emf

image17.png

image18.png

User Functions (user application specific)

Protocol Layer

1SO14443A 150144438 18015693

BC45B4523 Command Library Layer

Library

image19.png

N)) Holtek NFC Reader X

10144434 150144438 15015693 Crypto_M Advanced

Type A
SeanUD REOFF Cm D S
WUPA REQA
RoAbY 1 pr— AntiCol 1
Sel1 costaiior 1
88043164 ~
eaovs) smcowson Anticol 2
Sel2 sewecr
SA26e050 leaier e
D) Halt
Anticols| [sel3
Type2Teg
Read |Addr M Data H | write
Data Exchange
CRCENable Transmit

COM:|COMS v [a-sel2 94266580
SAK level 2:00

Fefresh

Clear

image20.png

) Holtel NFC Reader] W

150144434 150144438 (15015693 | Crypto_M | Advanced

RFOff RFRst
POR

o
on200FED

0A2DDFED

Data Exchange

CRCEnable

com:(coma ~| [o-reqp

ATQB: 0A2DDFBDS4434753838381

image21.png

CRCEnable

Initiate() c

Data Exchange.

0500

Transmit,

ommand

com:|coms +

b-trans -crc 0600

Transmit - 0600

Refresh | | peceive [TF |
Data Exchange /
o] Transmit
Select(Chip_ID) command
com:[coms v| [b-trans crooEtF
Transmit : 0e1f
Refresh | |Receive - 1F
Data Exchange
cRcEnable [oB Transmit
Get UID()
com:[coms v| [b-transcreo8
Transmit : 0b uID
Refresh | | peceive [4E90757500150250

image22.emf

Initiate Command()

Random Number

Select Command(0E)+Random Number(A6)

Read Area Command(08)+Address(07)

Data result

Write Area Command(09)+Address(07)+Data(4bytes)

No return data so Error report but it is write correctly

Read Area Command(08)+Address(07)

Data result

Microsoft_Visio___1.vsdx

Initiate Command()
Random Number
Select Command(0E)+Random Number(A6)
Read Area Command(08)+Address(07)
Data result
Write Area Command(09)+Address(07)+Data(4bytes)
No return data so Error report but it is write correctly
Read Area Command(08)+Address(07)
Data result

image23.png

) Holtel NFC Reader] W |

15014443 150144438 15015693 | crypto_m [Advanced

Time Slots:

g™ —|
ccosaszeaezooos
cosrisansrcooios

15683 Read/Write.

|Addr: H Data

Data Exchange

CRCEnable

COM:(COM4 _ ~| [inventory 16 slots command -

UID: 00052C0DCBS00104E0
UID: 0037134A2A500104E0
UID: 00DBAB26BES00104E0
Total Card: 03

image24.png

) Holtel NFC Reader] W |

150144434 150144438 [15015693 | Crypto_M | Advanced|

© Key-A: FRFFFFFFFFFF (6Bytes)
Key-B: FFFFRFFFFFFE (6Bytes)

BlockNo. ©

Data (16Bytes)

Read Block ‘ Wite Block ‘

COM:(COM4 ~| [mifare -cread ka FFFFFFFFFFFF O

MIFARE-COMBO-READ > KEY-TYPE: A, OFFFFFFFFFFFF, BLOCK-NUM: 0
UID: 13CAE71A
Data: 13CAE714240804006263646566676859

image25.png

W) Holtek NFC Reader

Low Power Card Detection

150144434 150144438 15015693 Crypto M Advanced

Advanc

Power Mode: [Sleep. v
8C45 Wakup Time: [S00 ms v
CD Calibration
FCA [INFCB [INFCV scan
BCA4S Register
sectoro v|joo || Read Read All
Write Default
Sector0 Sector1
134 17H 3%H 3AH 10H 11H 12H 13
neca [10 [[s8 | [10 |[o0 00 |[o2 |[10 |[20
nece 17 [fo1 |fos |[oo 00 |[o2 |[10 |[27

Engineer Test

Clear

Config Setup.

3

com:|coms v

Refresh

Clear

image26.emf

Interrupt Handler

BC45B4523 Functions

Demo Board I/O Configuration

Buzzer PWM Setup

UART Command Analysis and Command

Execution

SPI & UART Transmission Functions

1. Time & Delay Functions

2. BC45B4523 Read/Write &

 Basic Functions

Standard Protocol Basic Commands

Demo Board Control Functions

DES Algorithm Used by Crypto_M

Microsoft_Visio___2.vsdx

Interrupt Handler
BC45B4523 Functions
Demo Board I/O Configuration
Buzzer PWM Setup
UART Command Analysis and Command Execution
SPI & UART Transmission Functions
1. Time & Delay Functions
2. BC45B4523 Read/Write &  Basic Functions
Standard Protocol Basic Commands
Demo Board Control Functions
DES Algorithm Used by Crypto_M

image27.emf

Main

I/O Init

UART/SPI Init

GPTM0 Init (Buzzer)

System Tick Init

BC45_Configuration

(IO14443A)

Set Card Detect Threshold

Level Phase Q & I

Set Wakeup Timer = 500ms

Get Charater from UART

Get

ȼ

/r

Ƚ

?

Scan UID Loop?

Process Command

N

Y

Scan UID LowPwr

N

Y

Microsoft_Visio___3.vsdx

Main
I/O Init
UART/SPI Init
GPTM0 Init (Buzzer)
System Tick Init
BC45_Configuration
(IO14443A)
Set Card Detect Threshold
Level Phase Q & I
Set Wakeup Timer = 500ms
Get Charater from UART
Get‘/r’?
Scan UID Loop?
Process Command
N
Y
Scan UID LowPwr
N
Y

image28.emf

Start Calibration

1. Write [BC45 ADC Calibration] Command

2. Set extreme threshold to trigger CD IRQ

1. Set Wakeup Timer = 250ms

2. Setup IRQ as CD_IRQ

3. Start Wakeup Timer

Enter Card Detect Mode

Sleep or Wait IRQ

Wake or IRQ=1 ?

Read I&Q Value and add up

6th time?

Average I&Q Value

(adc I avg and adc Q avg)

Exit Card Detect Mode

Set Threshold I & Threshold Q

with adc X avg ± step

N

Y

N

Y

Microsoft_Visio___4.vsdx

Start Calibration
1. Write [BC45 ADC Calibration] Command
2. Set extreme threshold to trigger CD IRQ
1. Set Wakeup Timer = 250ms
2. Setup IRQ as CD_IRQ
3. Start Wakeup Timer
Enter Card Detect Mode
Sleep or Wait IRQ
Wake or IRQ=1 ?
Read I&Q Value and add up
6th time?
Average I&Q Value
(adc I avg and adc Q avg)
Exit Card Detect Mode
Set Threshold I & Threshold Q
with adc X avg ± step
N
Y
N
Y

image29.emf

Card Detection

1.Setup IRQ & CD_IRQ

2.Start Wakeup Timer

Enter Card Detect Mode

Sleep or Wait IRQ

Wake or IRQ=1 ?

Exit Card Detect Mode

Y

N

Y

N

Y

N

N

Y

BC45_Configuration

(CONFIG 14443A)

Scan UID_ISO14443A

Succeed ?

Scan UID_ISO14443B

Succeed ?

BC45_Configuration

(CONFIG 14443B)

Scan UID_ISO15693

Succeed ?

BC45_Configuration

(CONFIG 15693)

Exit

Microsoft_Visio___5.vsdx

Card Detection
1.Setup IRQ & CD_IRQ
2.Start Wakeup Timer
Enter Card Detect Mode
Sleep or Wait IRQ
Wake or IRQ=1 ?
Exit Card Detect Mode
Y
N
Y
N
Y
N
N
Y
BC45_Configuration
(CONFIG 14443A)
Scan UID_ISO14443A
Succeed ?
Scan UID_ISO14443B
Succeed ?
BC45_Configuration
(CONFIG 14443B)
Scan UID_ISO15693
Succeed ?
BC45_Configuration
(CONFIG 15693)
Exit

image1.png

Booyouswen

pe1s raour

i

vuss

m : =
J‘cg
E 2 o= =
. :lmznmr

vusa wp ¥ aypp

image2.png

e

i
S0t
ca oD
Ta e
o

)
ot

6 G5 s

e i T

S| sov Sov | sov

= = = = L
TFour
o
=
e
o

image30.wmf

image31.PNG

