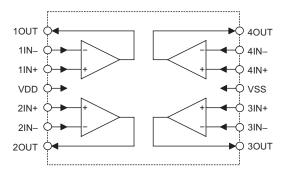


Features

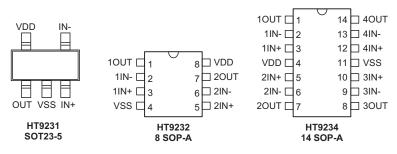
- Operating Voltage: 2.0V to 5.5V
- Supply Current: 220µA/amplifier typical
- Rail-to-Rail Output
- Gain Bandwidth: 2.3MHz typical
- Unity Gain Stable
- Available in Single, Dual and Quad Op's package types
- Package type:
 - ◆ HT9231: SOT23-5
 - HT9232: 8-pin SOP
 - ◆ HT9234: 14-pin SOP

Applications

- Automotive
- Portable Equipment
- Photo diode Amplifier
- Analog Filters
- Notebooks and PDAs
- Battery Powered Systems


Block Diagram

General Description


The Holtek HT9231/HT9232/HT9234 range of Operational Amplifiers operate with a single supply voltage as low as 2.0V and offer a low supply current of only 220μ A/amplifier. In offering rail-to-rail output voltage the devices can operate with a maximum voltage range. The devices also provide a gain bandwidth product of 2.3MHz and are also unity gain stable. These products are suitable for a wide range of analog signal processing applications but especially suitable for the portable device and battery powered equipment application areas.

Selection Table

Part No.	Amplifiers	Package
HT9231	1	SOT23-5
HT9232	2	8SOP
HT9234	4	14SOP

Pin Assignment

Pin Descriptions

HT9231 – 5-pin SOT23-5

Pin No.	Pin Name	Description	
1	OUT	Analog output	
2	VSS	Negative power supply	
3	IN+	Non-inverting input	
4	IN-	Inverting input	
5	VDD	Positive power supply	

HT9232 – 8-pin SOP

Pin No.	Pin Name	Description	
1	10UT	Analog output (operation amplifier 1)	
2	1IN-	Inverting input (operation amplifier 1)	
3	1IN+	Non-inverting input (operation amplifier 1)	
4	VSS	Negative power supply	
5	2IN+	Non-inverting input (operation amplifier 2)	
6	2IN-	Inverting input (operation amplifier 2)	
7	20UT	Analog output (operation amplifier 2)	
8	VDD	Positive power supply	

HT9234 – 14-pin SOP

Pin No.	Pin Name	Description	
1	10UT	Analog output (operation amplifier 1)	
2	1IN-	Inverting input (operation amplifier 1)	
3	1IN+	Non-inverting input (operation amplifier 1)	
4	VDD	Positive power supply	
5	2IN+	Non-inverting input (operation amplifier 2)	
6	2IN-	Inverting input (operation amplifier 2)	
7	20UT	Analog output (operation amplifier 2)	
8	30UT	Analog output (operation amplifier 3)	
9	3IN-	Inverting input (operation amplifier 3)	
10	3IN+	Non-inverting input (operation amplifier 3)	
11	VSS	Negative power supply	
12	4IN+	Non-inverting input (operation amplifier 4)	
13	4IN-	Inverting input (operation amplifier 4)	
14	4OUT	Analog output (operation amplifier 4)	

Absolute Maximum Ratings

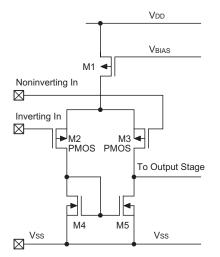
Supply Voltage6.0V
Difference Input Voltage $\pm (V_{\text{DD}}\text{-}V_{\text{SS}})$
Storage Temperature65°C to +150°C
Junction Temperature150°C

Input VoltageV_{SS}-0.3V \sim V_{DD}+0.3V
ESD protection on all pins (HBM;MM)≥4kV; 400V
Operating Temperature40°C to 85°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

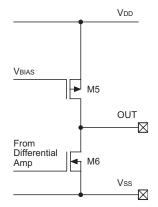
Electrical Characteristics

Unless otherwise indicated, Vss=GND, Ta=25°C, Vcm=V_DD/2, VL=V_DD/2, and RL=10k Ω to VL, CL=60pF


Symbol	Parameter		Test Conditions		-	Mary	Unit	
Symbol	Parameter	VDD	Conditions	Min.	Тур.	Max.	Unit	
V _{DD}	Supply Voltage	_	—	2.0	_	5.5	V	
Vos	Input Offset Voltage	5V	V _{IN} =V _{CM} /2	-5.0	_	5.0	mV	
$\Delta V_{OS}/\Delta T$	Drift with Temperature	5V	V _{IN} =V _{CM} /2	_	±2	_	μV/°C	
los	Input Offset Current	5V	Ta=25°C	_	±5	—	pА	
lΒ	Input Bias Current	5V	Ta=25°C	_	±50	_	pА	
V _{CM}	Input Common Mode Range	5V	_	0	—	V _{DD} -1.4	V	
V _{он}	Maximum Output Voltage Swing	5V	0.5V input overdrive $R_L=10k\Omega$ to V_L	V _{ss} +50	_	V _{DD} -100	mV	
V _{OL}	Maximum Output Voltage Swing	5V	0.5V input overdrive $R_L=2k\Omega$ to V_L	V _{ss} +150		V _{DD} -250	mV	
A _{OL}	DC Open-Loop Gain (large signal)	5V	V_{OUT} =0.2V to V_{DD} - 0.2V, V_{IN} = $V_{CM}/2$	70	100	_	dB	
GBW	Gain BandWidth Product	5V	R∟=10kΩ, C∟=60pF, V _{IN} =V _{CM} /2	_	2.3	_	MHz	
Φm	Phase Margin	5V	R _L =10kΩ, C _L =60pF G=+1V/V, V _{IN+} = V _{DD} /2	_	63	_	o	
CMRR	Common Mode Rejection Ratio	5V	V _{CM} =0V to V _{DD} - 1.4V	60	90	_	dB	
PSRR	Power Supply Rejection Ratio	5V	V _{CM} = 0.2V	65	95	_	dB	
Icc	Supply Current Per Single Amplifier	5V	lo=0A	100	220	340	μA	
SR	Slew Rate at Unity Gain	5V	R∟=10kΩ, C∟=60pF		2	_	V/µs	
Io_source	Output Short Circuit Source Current	5V	V _{IN+} − V _{IN-} ≥ 10mV	-5.0	-9.0	_	mA	
I _{O_SINK}	Output Short Circuit Sink Current	5V	V _{IN-} − V _{IN+} ≥ 10mV	5.5	9.5	_	mA	

Functional Description

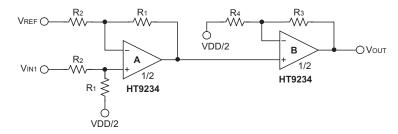
Input Stage


As the input stage of these op-amps is a PMOS differential amplifiers, the amplifiers can offer an extended common mode low input voltage down to V_{SS} -0.6V. At the other end of the voltage spectrum, the common mode input voltage has to be maintained at a level below V_{DD} -1.4 to keep the input devices, M2 and M3, in their active region. This implies that when using HT9231/HT9232/HT9234 in voltage follower applications, the inputs as well as the output active range will be limited between V_{SS} - V_{DD} -1V (approx.). It is necessary to avoid applying any voltage greater than V_{DD} +0.6V or less than V_{SS} -0.6V to the input pins, otherwise the internal input protection devices may be damaged

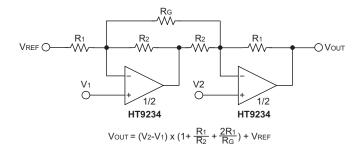
Since the input impedance of a PMOS transistor is inherently very high, they can be directly coupled to high impedance elements without loading effects. Examples could be coupling to ceramic transducers, integrating capacitors and resistor networks. It is this high input impedance characteristic that is its major advantage over its bipolar counterpart in certain application fields such as integrators where op-amp input currents can cause significant errors.

Output Stage

The devices use a push-pull CMOS configuration for the op-amp output stage to minimise power consumption and to provide adequate output drive currents. Note that the output is an unbuffered structure, therefore the open loop gain will be affected by the load resistor since the voltage gain of this stage is expressed as $(gm5+gm6)\times R_L$.


To keep power consumption to a minimum, the output short circuit current is limited to about -9mA for the source drive and 9.5mA for the sink drive. This is considered to be enough for most low power systems, however it is recommended only to used load resistors of >10k Ω for most applications. For heavy load driving applications, an external buffer stage using bipolar transistors is recommended.

The HT9231/HT9232/HT9234 is internally compensated for AC stability and can drive capacitive loads of up to 60pF.

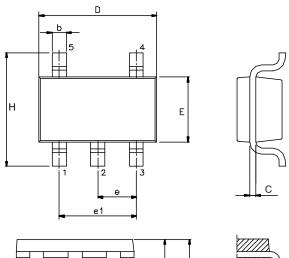


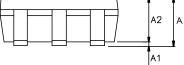
Application Circuits

Difference Amplifier Circuit

Two Op Amp Instrumentation Amplifier

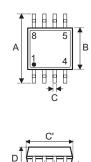
Package Information


Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the <u>Holtek website</u> for the latest version of the <u>package</u> information.


Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- Packing Meterials Information
- Carton information

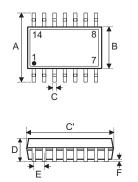
5-pin SOT23 Outline Dimensions



Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	—	0.057	
A1	_	—	0.006	
A2	0.035	0.045	0.051	
b	0.012	—	0.020	
С	0.003	—	0.009	
D	—	0.114 BSC	—	
E	—	0.063 BSC	_	
е	_	0.037 BSC	—	
e1	—	0.075 BSC	—	
Н	—	0.110 BSC	_	
L1	—	0.024 BSC	_	
θ	0°	—	8°	

Symbol	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	_	_	1.45	
A1	_	_	0.15	
A2	0.90	1.15	1.30	
b	0.30		0.50	
С	0.08	_	0.22	
D	_	2.90 BSC	—	
E	_	1.60 BSC	—	
е	_	0.95 BSC	—	
e1	_	1.90 BSC	—	
Н	_	2.80 BSC	—	
L1	_	0.60 BSC	—	
θ	0°	_	8°	

8-pin SOP (150mil) Outline Dimensions



Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	0.236 BSC	—	
В	_	0.154 BSC	_	
С	0.012	_	0.020	
C'	_	0.193 BSC	—	
D	—	—	0.069	
E	_	0.050 BSC	—	
F	0.004	—	0.010	
G	0.016		0.050	
Н	0.004	—	0.010	
α	0°	—	8°	

Symbol	Dimensions in mm			
Symbol	Min.	Nom.	Max.	
A	—F	6.00 BSC	_	
В	_	3.90 BSC	—	
С	0.31	_	0.51	
C'	_	4.90 BSC	—	
D	_	—	1.75	
E	_	1.27 BSC	_	
F	0.10	—	0.25	
G	0.40	_	1.27	
Н	0.10	_	0.25	
α	0°	—	8°	

14-pin SOP (150mil) Outline Dimensions

Symbol	Dimensions in inch			
Symbol	Min.	Nom.	Max.	
A	_	0.236 BSC	—	
В	—	0.154 BSC	—	
С	0.012	_	0.020	
C'	—	0.341 BSC	—	
D	_	_	0.069	
E	—	0.050 BSC	—	
F	0.004	—	0.010	
G	0.016	_	0.050	
Н	0.004	_	0.010	
α	0°	_	8°	

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	_	6.00 BSC	_
В	_	3.90 BSC	—
С	0.31	—	0.51
C'	_	8.65 BSC	—
D	—	—	1.75
E	_	1.27 BSC	_
F	0.10	_	0.25
G	0.40	—	1.27
Н	0.10	—	0.25
α	0°	—	8°

Copyright[©] 2020 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.