

PIR Digital Sensor

BM22S4021-1/BM22S4022-1 BM22S4023-1/BM22S4024-1

Revision: V1.00 Date: November 15, 2022 www.bestmodulescorp.com

Table of Contents

Features	3
General Description	3
Applications	3
Selection Table	4
Pin Assignment	5
Pin Description	5
Block Diagram	5
Absolute Maximum Ratings	6
D.C. Characteristics	
A.C. Characteristics	6
System Timing	-
UART Interface	9
Sensor Characteristics	9
PIR Sensor	
Temperature Sensor	9
Functional Instruction	10
Functional Description	10
System Flow Description	12
Command Description	
Application Circuits	17
UART Interface	18
UART External Pins	
Dimensions	19
Bottom View	19
Top View	
Side View	20

Features

- Operating voltage: 2.7V~5.5V
- Intelligent signal recognition algorithm
- Interface: UART
- Adjustable function
 - 8th order adjustable sensitivity
 - Custom trigger modes: Single mode or Continuous mode
 - Trigger output time: 1~6553.5ms
 - Low voltage detection: 2.7/3.0/3.3/3.6/4.0V
- Intelligent temperature sensor
- Factory-calibrated

General Description

The BM22S402x-1 series of modules are digital output human body infrared sensors, which fully integrate a passive infrared (PIR) sensor, a high-performance Analog Front End circuit and an A/D Converter. These hardware functions when combined with appropriate algorithms give the module the characteristics of high performance, high integration and small size. All modules are factory calibrated with the calibrated data stored in the memory to ensure that the module can be used directly without requiring software calibration.

Regarding the communication, the module has one standard interface, the UART interface. The modules are suitable for use in safety protection products, power saving devices and IoT terminal devices.

Applications

- IoT device
- Security products (intrusion-detection system, surveillance cameras)
- Energy saving (lighting, fan, air-conditioner, ext.)

Selection Table

				Ta=25°C
Part No.	Lens Type	Viewing Angle H/V	Detect Range	Interface
BM22S4021-1	Colling mounted	121°/77°	3 meters	UART
BM22S4022-1	Ceiling mounted	86°/75°	4 meters	UART
BM22S4023-1	Wall mounted	91°/10°	4 meters	UART
BM22S4024-1		10°/20°	10 meters	UART

Pin Assignment

Pin Description

Pin No.	Function	Туре	Description
1	GND	PWR	Negative power supply, GND
2	VDD	PWR	Positive power supply
3	RX	I	UART RX pin
4	TX	0	UART TX pin

Legend: PWR: Power; I: Digital Input; O: Digital Output

Block Diagram

Absolute Maximum Ratings

Supply Voltage	V_{ss} -0.3V to V_{ss} +5.5V
Input Voltage	$V_{\text{SS}}\text{-}0.3V$ to $V_{\text{DD}}\text{+}0.3V$
Storage Temperature	-40°C to 80°C
Operating (Ambient) Temperature	-10°C to 60°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Ta=25°C, V _{DD} =5V							
Symbol	Parameter		Test Conditions	Min	Тур.		Unit
Symbol	Parameter	V _{DD}	Conditions	Min.		Max.	Unit
V _{DD}	Supply Voltage	_	_	2.7	5.0	5.5	V
	Normal Current	3.3V	Normal mode	—	1.8	—	mA
1	Normal Current	5V	Normarmode	—	2.53	—	mA
I _{DD}	Standby Current	3.3V	Sleep mode	—		1	μA
		5V	Sleep mode	—		1	μΑ
VIL	Input Low Voltage	2.7V~5.5V	—	0		$0.2V_{\text{DD}}$	V
VIH	Input High Voltage	2.7V~5.5V	_	$0.8V_{\text{DD}}$	—	V _{DD}	V
V _{LVR}	Low Voltage Reset Voltage	—	—	-5%	2.55	+5%	V
		_	LVD enable, voltage select 2.7V		2.7		
		—	LVD enable, voltage select 3.0V		3.0		
VLVD	Low Voltage Detect Voltage	_	LVD enable, voltage select 3.3V	-5%	3.3	+5%	V
		_	LVD enable, voltage select 3.6V		3.6		
			LVD enable, voltage select 4.0V		4.0		

A.C. Characteristics

System Timing

Ta=25°C, V_{DD} =5V

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{PU}	Power-up Time	When $V_{DD} \ge 2.7V$, until the first communication can be performed	_	60	_	ms
t _{swR}	Software Reset Time	Time from reset to PIR detection	_	30	—	S
t _{PWU}	PIR Warm-up Time	PIR warm-up	_	30	—	s
t _{wu}	System Wake-up Time	Time from wake-up to receive commands	_	15	_	μs
t _{wR}	WRITE Command Response Time	Time from executing WRITE command to respond	_		9	ms
t _{RR}	READ Command Response Time	Time from executing READ command to respond	_	350	_	μs
t _{sr}	SETUP Command Response Time	Time from executing SETUP command to respond	_	350	_	μs
t _{CI}	Command Interval Time	_	10	_	_	ms

Note: The System Ready signal indicates that the system initialisation has completed and the sensor is ready to receive commands sent by the master device.

WRITE Command Response Time

READ Command Response Time

SETUP Command Response Time

UART Interface

				N	√ _{DD} =5V, [•]	Ta=25°C	
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
BDR	UART Baud Rate			38400	_	bps	
tr	Rising or Falling Time		—	—	0.3	μs	
$\begin{array}{c} \text{Start} \\ \text{Start} \\ \text{Bit} \\ \text{Bit} \\ \text{Bit} \\ \text{Image: Start} \\ \text{Bit} \\ \text{Start} \\ \text{Start} \\ \text{Bit} \\ \text{Start} \\$							

UART Timing Chart

Sensor Characteristics

PIR Sensor

 V_{DD} =5V, Ta=25°C, unless otherwise specified

Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Sensing Element Size	_	_	2×1		mm ²
Responsivity	Ta=100°C, 1Hz	3.8	4.3	_	kV/W
Match	Ta=100°C, 1Hz			15%	—
Noise	Ta=25°C, 0.3Hz~3Hz		33	80	µVp-p
Fov. H	No lens		135°	_	—
Fov. V	No lens	—	123°		

Temperature Sensor

Deremeter	Test Conditions			Turn	Max	l lm if
Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
Sensing Range	2.7V~5.5V		-20	_	80	°C
Resolution	2.7V~5.5V	_	_	0.1		°C
Acourcov	5V	Ta=0°C~60°C	_	±1		°C
Accuracy	οv	Ta=-20°C~0°C and Ta=60°C~80°C		±3		°C

Functional Instruction

Functional Description

PIR Detection

The BM22S402x-1 modules provide object movement detection function and can select whether to enable this function, which can be freely controlled by the user in different environments. If the function is enabled, when the sensor detects an object in the command mode, the sensor will automatically send the STATUS[7:0] bits to inform the master.

Send Status Format (Slave → Master)

Sensitivity

The BM22S402x-1 modules provide an 8-order sensitivity adjustment function for different detection distances to adapt to various operating environments. Use the UART communication for adjustment. Refer to the Command Table.

Trigger Mode

The BM22S402x-1 modules provide two trigger modes, single shot and continuous trigger. The single trigger is to detect an object movement within the detection range and trigger a signal. Even if an object passes within the ON time, the ON time will not be increased. The sensor will not trigger again until the ON time and block time have elapsed. Continuous trigger means that the object moves within the ON time. The ON time will be recalculated until no object moves within the detection range. More details refer to the Single/Continuous Mode Description.

ON Time

When the sensor detects an object movement, the duration after triggering the signal is the ON time. The BM22S402x-1 modules provide a time range of 1sec to 6553.5sec with an interval of 0.1sec by sending a command, making the application more flexible.

Block Time

After the end of the sensor ON time, the time elapsed until the next trigger is the block time. Providing a time range of 0.2sec to 51sec with an interval of 0.2sec.

BM22S4021-1/BM22S4022-1/BM22S4023-1/BM22S4024-1 PIR Digital Sensor

Single/Continuous Mode Description

PIR Data output – Auto Mode

The BM22S402x-1 modules provide two data output modes, command mode and automatic output, which can be configured by the AUTO bit in the PIR configuration register. The command mode is one request and one response for communication. For more command details, refer to the Command Table. Automatic output is continuously output the signal, temperature, status and other relevant information to the master, with an interval of 50ms, so that the master can master the relevant information of the sensor without sending commands all the time. The output format is 11-byte. The format is as follows:

Auto Mode Format

In this mode, it will execute the corresponding action, end the automatic output and enter the command mode after receiving the master command. If the master command is received during the data transmission, the above actions will be performed after the remaining data is sent.

Checksum = (0x55+0x07+PIRADL+PIRADH+PIRL+PIRH+STATUS+TL+TH)

Low Voltage Monitoring

This series of modules provide Low Voltage Detect (LVD) and Low Voltage Reset (LVR) mechanisms for low voltage conditions. The master device can poll the LVDO flag in the STATUS register for low voltage monitoring. The LVDO flag is set high when V_{DD} is less than 2.7V and cleared to zero after the master device reads the STATUS register. The LVR function will reset the system when V_{DD} is less than the 2.55V voltage threshold.

Function	Condition	Reaction
LVD on	—	LVDEN=1
LVD	V _{DD} <2.7V	LVDO=1
LVR	V _{DD} <2.55V	System reset

System Flow Description

The BM22S402x-1 modules use the UART 8-N-1 standard as the digital output mode. The default command is one request and one response. A time of t_{PWU} time is required after the system initialisation, the system will continue to detect. If an object passes and meets the trigger conditions, the sensor will send a status signal to the master. Refer to the Response Format for the relevant format. If there is no trigger, the system will wait for the master to ask. The commands are divided into three types, READ, WRITE and SETUP. For more command details, refer to the Command Table.

READ: Read sensor data such as temperature value and register status, etc.

WRITE: Setup parameter such as sensitivity, ON time and Block time, etc.

SETUP: Control the sensor operations, including sleep mode entry and system reset.

Command Description

In the communication, the BM22S402x-1 modules are used as slave devices, using one request and one response command mode.

The sensor uses UART 8-N-1 standard with baud rate of 38400 to communicate with the master. The relevant commands are as shown in the following table.

Request: Master \rightarrow Slave

Response: Slave \rightarrow Master

Command Format

Command Table

No.	Command Type	Command Code	Functional Description	Data (Byte)
1	READ	0x01	Request to read PIR original signal	_
'	READ	UXUT	Respond with PIR original signal	2
2	READ	0x02	Request to read PIR filtering signal	_
2	READ	0x02	Respond with PIR filtering signal	2
3	READ	0x03	Request to read device module name	—
3	READ	0x03	Respond with device module name	10
4	READ	0x04	Request to read PIR configuration register	—
4	READ	0x04	Respond with PIR configuration register	1
5	WRITE	0x05	Setup PIR configuration register	1
5	WRITE	0x05	Respond with WRITE information	1
6	READ	0x06	Request to read sensitivity register	_
0	READ	0,000	Respond with sensitivity register	1
7	WRITE	0x07	Setup sensitivity register	1
ľ	WRITE	0.07	Respond with WRITE information	1
8	READ	0x08	Request to read PIR time delay interval	_
0	READ	0,000	Respond with PIR ON time interval	2
9	WRITE	0x09	Setup PIR ON time interval	2
9	WRITE	0,09	Respond with WRITE information	2
10	READ	0x0A	Request to read PIR block time interval	_
10	READ	UXUA	Respond with PIR block time interval	1
11	WRITE	0.00	Setup PIR block time interval	1
11	WRITE	0x0B	Respond with WRITE information	1
12	READ	0x0C	Request to read PIR STATUS register	_
12	READ	UXUC	Respond with PIR STATUS register	1
13	SETUP	0x0D	Request device to enter Sleep mode	_
13	SETUP	0,000	Respond with SETUP information	1
14	14 SETUP 0x0F		Reset the device	—
14			Respond with SETUP information	1
15	READ 0x10 Request to read temperature data (Unit: 0.1°C		Request to read temperature data (Unit: 0.1°C)	—
10		UXIU	Respond with temperature data (Unit: 0.1°C)	2

◀── 1 Byte →	◀── 1 Byte →	◀── 1 Byte →	← 0~1 Byte →	← 1 Byte>
Header (0xFB)	Command	Data Length	Data	Checksum

Request Format (Master \rightarrow Slave)

Response Format (Slave \rightarrow Master)

Header (1 Byte): Start code, fixed at 0xFB

Command (1 Byte): Command code, refer to the Command Table above

Data Length (1 Byte): Refer to the Command Table above

Data: Refer to the Command Table above

Checksum (1 Byte): Checksum = Command+Data Length+Data

Note: The Data field needs to be omitted if the master device sets the Data Length of the command to 0x00, thereby the packet length of the request is 4-byte.

Format

Error Code Response

When the READ/WRITE/SETUP command receiving from the master is in error, the sensor will respond the error code to inform the master. The format is shown below:

|--|

Error Code Response Format

PIR Filtering Signal (2 Bytes)

The PIR filtering signal output is in a form of HEX code. Each transfer includes 2 bytes with the low byte first and the high byte last. Its calculation is shown below:

PIR Filtering Signal = (PIRH×256+PIRL)

Legend: PIRH = PIR Filtering Signal Value High Byte PIRL = PIR Filtering Signal Value Low Byte

PIRL	PIRH
------	------

PIR Filtering Signal Output Format

Temperature Data (2 Bytes)

The Temperature value output is in a form of HEX code. Each transfer includes 2 bytes with the low byte first and the high byte last. Its calculation is shown below:

Temperature Value = (TH×256+TL)/10 (Unit: °C)

Legend: TH = Temperature Value High Byte

TL = Temperature Value Low Byte

TL	ТН

Temperature Data Output Format

PIR Original Signal (2 Bytes)

The PIR original signal is composed of 2 bytes. Each transfer includes 2 bytes with the low byte first and the high byte last. The original signal is signed, which is judged by the highest bit of PIRADH. It is positive when the bit is low and it is negative when the bit is high.

PIR Original Signal Positive Value = (PIRADH×256+PIRADL)

PIR Original Signal Negative Value = (PIRADH×256+PIRADL)-65535

Legend: PIRADH = PIR Original Signal High Byte PIRADL = PIR Original Signal Low Byte

PIRADL	PIRADH
--------	--------

PIR Original Signal Output Format

Device Information

The device information is composed of 10-byte ASCII code as shown below:

ĺ	Part Numbe	r B	М	2	2	S	4	0	2	х	-1
	Value	42	4D	32	32	53	34	30	32	78	31
]	3: 42h	M: 4Dh	2: 32h	2: 32h	S: 5.	3h 4:	34h	0: 30h			

2: 32h	x: 78h	-1: 31h

Register Description

• STATUS Register (Command code: READ: 0x0C)

Bit	7	6	5	4	3	2	1	0
Name	_		STABLE	LVDO	PIRDF	—	BTF	TF
R/W	_	—	R	R	R	—	R	R
POR	_		0	0	1	—	0	0

Bit 7~6 Unimplemented

Bit 5	STABLE : PIR stable flag 0: PIR unstable 1: PIR stable
	The STABLE flag will be set high after a time of t_{SWR} or t_{PWU} has elapsed.
Bit 4	LVDO: Low voltage detect output flag 0: No low voltage detected 1: Low voltage detected
	The LVDO flag will be set high when the system voltage is less than 2.7V and cleared to zero after the master device reads the STATUS register.
Bit 3	PIRDF: PIR detection flag 0: Detection function disabled 1: Detection function enabled
	The PIRDF bit is the detection function flag. This bit is used to determine whether the detection function has been enabled or not.
Bit 2	Unimplemented
Bit 1	BTF : PIR block time flag 0: No block time entered 1: Block time entered
	This bit is used to determine whether the sensor has been entered the block time or not.
Bit 0	TF: PIR signal trigger flag 0: Without signal triggered 1: Signal triggered
	This bit is used to determine whether the sensor has been triggered by signal or not. After the ON time, this bit will be cleared to "0".

• PIR Configuration Register (Command code: READ: 0x04, WRITE: 0x05)

This register is used to enable the sensor LVD function, trigger mode selection and LVD voltage selection.

Bit	7	6	5	4	3	2	1	0			
Name	VLVD2	VLVD1	VLVD0	LVDEN	PIREN		TRIG	AUTO			
R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W			
POR	u										
Bit 7~5		.0V .3V .6V	-	e selection tion is 011)							
Bit 4 LVDEN: LVD function control 0: Disable (Default) 1: Enable											
Bit 3	3 PIREN : PIR Detection function control 0: Disable 1: Enable (Default)										
Bit 2	Unimple	emented									
Bit 1	-										
Bit 0	0 AUTO: PIR Auto mode control 0: Commande mode 1: Automatic data output (Default)										

Note: "u" stands for unchanged. The parameter in the system will remain unchanged after power on reset or software reset.

• Sensitivity Register (Command code: READ: 0x06, WRITE: 0x07)

This register is used to select the sensor sensitivity.

Bit	7	6	5	4	3	2	1	0
Name	—	—	—	—	—	SEN2	SEN1	SEN0
R/W	—	_	—	—	—	R/W	R/W	R/W
POR	_	_	_		_	u	u	u

Bit 7~3 Unimplemented

Bit 2~0 SEN2~SEN0: Sensitivity selection

000: Level 1 (Default) 001: Level 2 010: Level 3 011: Level 4 100: Level 5 101: Level 6 110: Level 7 111: Level 8

Level 1 is the longest distance. The closer the distance, the higher the level.

Note: "u" stands for unchanged. The parameter in the system will remain unchanged after power on reset or software reset.

• ON Time Registers (Command code: READ: 0x08, WRITE: 0x09)

These two registers are used to configure the ON time of the sensor.

Bit	7	6	5	4	3	2	1	0
Name	OT15	OT14	OT13	OT12	OT11	OT10	OT9	OT8
R/W	R/W	R/W						
POR	u	u	u	u	u	u	u	u

Bit 7~0 **OT15~OT8**: ON time high byte bit 15~bit 8

Bit	7	6	5	4	3	2	1	0
Name	OT7	OT6	OT5	OT4	OT3	OT2	OT1	OT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	u	u	u	u	u	u	u	u

Bit 7~0 **OT7~OT0**: ON time low byte bit 7~bit 0

Note: "u" stands for unchanged. The parameter in the system will remain unchanged after power on reset or software reset.

Use the ON time register to set the ON time to 3sec. The setting range is from 1sec to 6553.5sec, the minimum is 1sec and the interval is 0.1sec. When the OT[15:0] bits are range from 0x0000 to 0x000A, it will be regarded as 1sec. Its calculation is shown below:

 $OT[15:0] = User's required seconds \times 10$ (Unit: sec)

• Block Time Register (Command code: READ: 0x0A, WRITE: 0x0B)

This register is used to configure the block time of the sensor.

Bit	7	6	5	4	3	2	1	0
Name	BT7	BT6	BT5	BT4	BT3	BT2	BT1	BT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	u	u	u	u	u	u	u	u

Bit 7~0 **BT7~BT0**: Block time bit 7~bit 0

Note: "u" stands for unchanged. The parameter in the system will remain unchanged after power on reset or software reset.

Use the block time register to set the block time to 1sec. The setting range is from 0.2sec to 6553.5sec, the minimum is 0.2sec and the interval is 0.1sec. When the BT[7:0] bits are set to 0x00, it will be regarded as 0.2sec. Its calculation is shown below:

BT[7:0] = User's required seconds×5 (Unit: sec)

Application Circuits

UART Interface

The BM22S402x-1 modules contain an integrated full-duplex asynchronous serial communications UART interface that enables communication with external devices that contain a serial interface. The UART function has many features and can transmit and receive data serially by transferring a frame of data with eight data bits per transmission.

The integrated UART function contains the following features:

- Full-duplex, asynchronous communication
- 8 bits character length
- No parity function
- One stop bit
- Fixed baud rate of 38400bps
- RX pin wake-up function

UART External Pins

To communicate with an external serial interface, the internal UART has two external pins known as TX and RX, which are the UART transmitter and receiver pins respectively.

Dimensions

Bottom View

Top View

(Unit: mm)

(Unit: mm)

Side View

(Unit: mm)

10,5

9,4

Ť.

Copyright[©] 2022 by BEST MODULES CORP. All Rights Reserved.

The information provided in this document has been produced with reasonable care and attention before publication, however, BEST MODULES does not guarantee that the information is completely accurate. The information contained in this publication is provided for reference only and may be superseded by updates. BEST MODULES disclaims any expressed, implied or statutory warranties, including but not limited to suitability for commercialization, satisfactory quality, specifications, characteristics, functions, fitness for a particular purpose, and noninfringement of any third-party's rights. BEST MODULES disclaims all liability arising from the information and its application. In addition, BEST MODULES does not recommend the use of BEST MODULES' products where there is a risk of personal hazard due to malfunction or other reasons. BEST MODULES hereby declares that it does not authorise the use of these products in life-saving, lifesustaining or safety critical components. Any use of BEST MODULES' products in life-saving/sustaining or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold BEST MODULES harmless from any damages, claims, suits, or expenses resulting from such use. The information provided in this document, including but not limited to the content, data, examples, materials, graphs, and trademarks, is the intellectual property of BEST MODULES (and its licensors, where applicable) and is protected by copyright law and other intellectual property laws. No license, express or implied, to any intellectual property right, is granted by BEST MODULES herein. BEST MODULES reserves the right to revise the information described in the document at any time without prior notice. For the latest information, please contact us.